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Abstract

Interference lithography was used on an Azo-Glass thin film to inscribe large aper-
ture circular surface relief gratings, with groove depth (50-70 nm) and pitch varied
among three pitch values, for use in surface plasmon resonance coupling and in-
tensity transmission measurements. A theory exploiting the rotational symmetry
of a circular grating’s-grating vector and its relationship to the coupling require-
ment of the surface plasmon mode; by separating the coupling and non-coupling
components of the field and assuming complete suppression over the non-coupling
component, an intensity profile of the coupling field can be resolved. Normalized
transmission spectrums were measured with linear and ‘unpolarized’ light sources,
with amplification factors ranging from (1.8-3.6) and (2.3-4.2) respectively. Poten-
tial lensing effects were observed under a linearly polarized beam with a diameter
matched aperture. Under full illumination, the gratings’ surface plasmon response
was ∼43% of the amplification as was under ‘half-illumination’ along the direction
of polarization. We are led to hypothesize a destructive interference of the counter
propagating SPR modes under linear polarization.
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Résumé

La lithographie par interférence a été utilisée sur un film mince d’Azo-Glass pour
inscrire des réseaux circulaires à relief de surface à grande ouverture, avec une
profondeur de rainure (50-70 nm) et un pas variant entre trois valeurs de pas,
pour une utilisation dans les mesures de couplage de résonance plasmonique de
surface et de transmission d’intensité. Une théorie exploitant la symétrie de rota-
tion du vecteur de réseau d’un réseau circulaire et sa relation avec l’exigence de
couplage du mode de plasmon de surface ; en séparant les composantes de cou-
plage et de non-couplage du champ et en supposant une suppression complète de
la composante de non-couplage, un profil d’intensité du champ de couplage peut
être résolu. Les spectres de transmission normalisés ont été mesurés avec des
sources lumineuses linéaires et non polarisées, avec des facteurs d’amplification
allant respectivement de (1,8-3,6) et (2,3-4,2). Des effets de lentille potentiels ont
été observés sous un faisceau polarisé linéairement avec une ouverture de diamètre
adapté. Sous pleine illumination, la réponse plasmonique de surface des réseaux
était ∼43% de l’amplification comme c’était le cas sous ”demi-illumination” le
long de la direction de polarisation. Nous sommes amenés à émettre l’hypothèse
d’une interférence destructive des modes SPR se propageant en sens inverse sous
polarisation linéaire.
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Â Unit vector

A(x,y,z) (x,y,z) - component of the vector A

A(r,θ) (r,θ) - component of the vector A with resepct to a defined origin

A’ Real value of A

A” Imaginary vaule of A

Ad Value of A in a dielectric

Am Value of A in a metal

〈A〉 Time-averaged value of A

xviii



1 Introduction

A Surface Plasmon Polariton (SPP) is a quasiparticle produced by coupling a
Photon (Electromagnetic Wave) and a Surface Plasmon (SP) mode at a dielectric-
metal interface[1]. The SP mode’s Electromagnetic (EM) field is periodic on the
surface and evanescent normal to the surface[2]. The SP mode is produced by
a charge density oscillation at the dielectric-metal interface, specifically in the
form of the conducting electrons in the active media [2]. In a classical approach,
the conducting electrons form a free electron gas inducing a polarization of the
incident EM wave, coupling the photon with the free charge in the active media,
creating a SPP.

1.1 Historical Context

At the turn of the 20th century, R.W.Wood measured the spectrum of an ‘anoma-
lous diffraction grating’, producing unexpectedely high monochromatic intensity
in the first order diffraction spectra as seen in Fig. 1.1 [3]. Wood discovered
that the incident polarization of light determined the presence of the anomalous
diffraction spectrum, where the maximum intensity occured when the electric field
was orthogonal to the grating grooves (Transverse Magnetic) and minimum when
parallel (Transverse Electric). Rayleigh first attempted a theoretical description
of the diffraction anomalies, approaching the problem with the tool of Hyugen’s
wave propagation principle. Rayleigh hypothesized the ‘passing off’ of the tan-
gential momentum of a diffraction order from a groove constructively interfering
with the orders of the next groove, occuring at a singular wavelength dependent
on the groove period [4]. Rayleigh’s interpretation was not the direct cause of the
anomalous spectrum seen by Wood. The first accurate interpretation of Wood’s
results came in 1941 when Fano first described ‘Quasi-Stationary Waves’ on the
surface of a grating, arising from the sign change in the discontinuity of the refrac-
tive index of the dielectric and the metal grating[5]. The ‘Quasi-Stationary Waves’
have since been termed as Surface Plasma Waves (SPW) [6][7] and colloquially
referred to as SPPs today.
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Figure 1.1: Sourced figure from Wood’s seminal discovery with spectra of the first order
reflection diffraction mode of a ruled grating at various angles of incidence[3]

1.2 Methods of SPP Excitation

Light (with frequency less than the plasma frequency: ω < ωp) directed onto
a surface capable of supporting a SP, with a negative real component of the
dielectric permittivity, always has a momentum vector smaller than the SP mode.
Hence, radiative modes need a momentum boost at the surface to allow for phase
matching and coupling[1].

There are two distinct methods in which SPPs have been excited: total internal
reflection (TIR) and diffraction, each with various geometries involved.

The Otto and Kretschmann methods utilize the evanescent fields that occur
under TIR in a prism, where photons capable of tunneling from the reflected beam
couple into an SPP on the metal surface adjacent to the TIR [6][7]. Otto confirmed
non-radiative modes by measuring the reflectivity at various angles of incidences
and wavelengths of light, where the configuration used an air gap between the
prism and metal surface. The Kretschmann configuration utilizes a thin metal
layer in direct contact with the plane of reflection as seen in Fig. 1.2, however
the metal thickness needs to be controlled, allowing penetration of the SP fields
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1.2. Methods of SPP Excitation

through the metal while also providing a sufficient bulk media for coupling[8].

Figure 1.2: Sourced figure showing diagrams of a classic Kretschmann configuration (a)
and a hybrid grating configuration (b)[9]

The second of the methods, is the excitation by diffraction at the dielectric-
metal surface[10]. The diffraction of a wave creates evanescent modes with iden-
tical temporal frequency as the incident light with increased momentum. Diffrac-
tion of the waves can be caused by various surface features. Early experiments
on thin films of metal found plasma resonance absorption via a surface plas-
mon mode [11] where the radiation was observed in only two directions from the
incident plane wave(Transmitted and Reflected). Theoretical work later hypoth-
esized that the observed scattered radiation at the plasma frequency was caused
by a small amount of surface roughness, inducing surface currents characterized
by small dipole producing surface currents [12]. The use of dipoles for currents
were also used much earlier to describe Mie’s solutions to Maxwell’s equations
around a spherical metallic particle in an oscillating electric field[13]. Mie’s solu-
tions lead to conditions to excite Localized Surface Plasmon Polaritons (LSPPs)
within metallic particles. Enhanced transmission was first observed by Kelly and
collaborators[14]. In general, it’s been found that subwavelength holes or protru-
sions on a metallic film will allow for the coupling to an SP mode[15].

Counter to the LSPP in metallic nanoparticles and the stationary nature of
the quasi-particle, a propagating SPP can be created with incident light on a
diffraction grating of appropriate periodicity and depth[16]. One of the more im-
portant features a diffraction grating has over the previous methods is the ability
to both efficiently couple to the SP mode, and reversely couple the SP mode into
the radiative mode for enhanced transmission at the coupling wavelength[17][18].
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1.3 Azopolymer Photo-Interference Lithography

Fabrication of nanostructured surfaces with amorphous azopolymer films has been
of significant interest. The photo-isomerization reaction between the trans- and
cis- forms of the chemical structure as depicted in Fig. ??, and the coperative
molecular motions within the polymer structure relative to the incident field po-
larization give rise to mesoscopic and macroscopic molecular motion respectively.
Azopolymers have been used to fabricate novel photonic elements by utilizing the
movement associated with the photo-isomerization, including tunable diffractive
surfaces [19] polarization splitting bifocal lenses[20], polarization sensing films
[21], and plasmonic sensing devices [22].

Figure 1.3: Sourced figure depciting the chemical structure of the two azobenzen isomers
[23]

In particular, an azopolymer film under a laser interference pattern of suit-
able incident wavelength, first observed by Rochon and Natansohn[24], form sur-
face relief gratings (SRGs) that are polarization and intensity dependent [25].
The dominant source of the molecular processes inscribing the SRGs are still not
agreed upon, however the fabrication of many complex surfaces using the interfer-
ence lithographic technique have been used in creating diffractive and plasmonic
devices[26][27][28][29][30].

1.4 Cylindrical Vector Beams and Generating
Methods

For centuries the process of polarizing light came in the form of isolating vectoral
components of an incident light source via TIR and birefringence, an impassable
optical element such as a wire grid, or simply polarization by means of scattering.
These methods produce a spatially homogenous state of polarization (SOP), in
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which the surface of constant phase is the transverse plane. This plane wave
solution is the most trivial to the Helmholtz’s equation.

There are more complex modes of a paraxial beam, one which possess a
rotational symmetry around the axis of propagation, a spatially inhomogenous
SOP[31]. The Laguerre-Gaussian and Bessel-Gaussian modes are called Cylin-
drical Vector Beams (CVB’s) because of their polarization symmetry around the
center. The angular symmetry of polarization in the CVBs are a product of a heli-
cal phase wave front centered around a phase singularity[31][32]. Interest in CVBs
has been revitalized due to many of their attributes, such as the non-vanishing
longitudinal electric and magnetic fields under tight-focusing, in the radially and
azimuthally polarized beams respectively. The former allows focusing beyond
the diffraction limit[33] and has been used in machining processes[34], plasmonic
focusing[35], and molecular orientation measurements[36] among other things.
The degrees of accessible polarization modes in the class of CVBs is also of great
interest in the communications field[37], where metasurfaces have recently been
utilized to multiplex/demultiplex CVB modes with high transmission rates[38].

There are two approaches when generating CVBs – active and passive. Active
generating methods of CVBs involve intracavity devices of the laser, such as using
an axial birefringent component as done first by D.Pohl[39], and later improved
on when interest in CVBs was renewed[40]. Other methods such as a circular
multilayer-polarizing grating end mirrors were used to actively generate CVBs[41].
Higher order CVBs have been also generated using uniaxial crystals[42].

Passive methods for generating CVBs make use of the interrelation of the
phase and the polarization of the light passing through the conversion compo-
nent, such as using multiple spatial light modulators [43][44], binary multi-sector
phase plates[45], and q-plates[46]; or interferomeric techniques external to the
laser cavity [47][48]. As seen in Fig. 1.4, a segmented q-plate with variable retar-
dances were used in an optical system to generate various CVBs; analysing the
intensity distributions using a back linear polarizer (LP) at varying angles.
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Figure 1.4: Sourced figure showing the transmission profile through a q-plate, using a
linear polarizer as an analyzer with varying polarizing angles at the top of the figure[46]

Twisted Nematic Liquid Crystals (TNLC) have been used as a method in cre-
ating CVBs. When a nematic LC is fixed in a twisted state, applying a voltage
across the dielectric ends drives a re-orientation along the twisting axis, varying
transmissive properties through the LC[49]. With precise rubbing in the fab-
rication process of the TLNC, the potential of these devices to convert axially
symmetric polarizations of different orders has been discussed[50]. A TNLC can
continuously convert a linear polarized beam into an axially symmetric polarized
state corresponding to the geometric twisting of the LCs. This has been demon-
strated both in lab[51][52], and as a market device[53]. The TLNC devices differ
from q-plates, by the continuous partioning of the linear retardance gradient,
where as in the q-plates shown in Fig. 1.4, the discrete partitioning is easily seen.

1.5 Surface Plasmon Polaritons and Polarization

The polarization of a field is an important characteristic of any EM field, providing
information about the emitting source, if observed directly, or the media in which

6



1.5. Surface Plasmon Polaritons and Polarization

the field is travelling through by some polarization conversion. The coupling
relationship between an SPP and the incident field corresponds to the geometry
and method of the coupling surface[1]. In the case of prism coupling there is a
singular transverse polarization which excites the SPP mode, whereas in the LSPP
configurations the Mie resonances can occur along multiple axes of transverse
polarizations due to the symmetries of the particles involved in coupling[13][54].
Similarly, an SPP only couples via a grating if the projection of the polarized field
along the grating vector is nonzero[1]. The relationship between the polarization
of an incident field and the generation, characteristics and applications of the
excitation of the corresponding SPPs is an active area of research[55][56][57][58].

Phase gratings such as those manufactured using the photo-interference meth-
ods creating SRGs have been used to create cross gratings[59], fourier SRG struc-
tures for plasmonic images[60], and non linear gratings[61][62][63]. The polariza-
tion conversion of the incident light induced by cross gratings is not fundamentally
understood, but has been observed to create high sensitivity plasmonic sensors
used for bio-detection of E-Coli[28] and refractive index changes[64]. Nonlinear 2-
dimensional gratings with a nano-aperture have been studied as plasmonic devices
and have been found to be similar in the transmission spectra of analogous linear
gratings; up to a blueshift caused by LSPPs excited by defects in the aperture[65].

(a) (a)
(b) (b)

Figure 1.5: (a) Diagram of cross grating with surface organelle substrate molecules and
the measurable resonance shift in the spectrum from a change in the refractive index
[28] (b)Image produced from an SPR irradiation on a Fourier inscribed gratings using
interference lithography[60]

Curved concentric gratings with varying symmetries as seen in Fig. 1.6, have
been observed as plasmonic lenses for linearly polarized light[66]. It is important
to note that the double-sided curved gratings seen in Fig. 1.6 were purposely sim-
ulated to have the ridges of one side of the grating line up with the grooves of the
other (asymmetry). The result of directing linearly polarized light at these asym-
metrical grating structure was an intense region in the center of the structure.
Without this asymmetry the fields from the two curved gratings would have de-

7



1.6. Thesis Statement

structively interfered[66]. Moreover, non-linear grating structures have also acted
as radial/azimuthal polarizers[67].

Figure 1.6: Sourced figure showing the simulation of the intensity of single curved
grating (left) and an assymetric double-sided curved grating(right) [66]

1.6 Thesis Statement

1.6.1 Interface

The goal of this project is to utilize interference lithography to inscribe large
aperture circular SRGs, for observation of the surface plasmon resonance and its
dependency on the polarization of the coupling radiation. The properties of a
non-linear grating’s coupling ability to an SP mode is studied, and its similarities
to a linear grating is contrasted. Moreover, the wavelength dependent SPR polar-
ization conversion holds for circular gratings. Finally the field enhancement from
the SPR response on circular gratings under radially polarized light is observed.

1.7 Thesis Structure

This Thesis will introduce the theory, needed for a thorough understanding of
the following discussion in Chapter 2. This will include a discussion on the pri-
mary principles of EM, polarization and SP theory, followed by an approximation
of the field SP transmission through a large aperture circular grating. Chap-
ter 3 will discuss the experimental setups, measurement and software tools used
throughout the project. Chapter 4 will contain and discuss the results of the
experiments, including the observation of the SPR transmission signal and polar-
ization conversion through a cross polarizer setup. The conclusion in Chapter 5
will summarize the results, and discuss future work understanding the limits of
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interference lithography under non-linear inscription environments, exictations of
SP fields on large aperture circular gratings and their responsiveness to varying
incident polarizations.
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2 Theory

In this chapter a mathematical framework is introduced to cover EM theory from
which a novel SPR intensity-mapping theory will be presented to analyze and
discuss the experimental results.

The discussion will begin with an overview of Maxwell’s equations, the exis-
tence of EM waves, and their polarization properties. Following the fundamentals
of EM waves, the inscription of EM gratings using interference on a photoreactive
azopolymer film will be outlined, along with the classical Drude theory of metals
and the necessary parameters required for the existence of a SP mode. Addi-
tionally, the excitation of a SPP via the coupling of photons and the SP mode
on the inscribed metallic-layered SRG and the corresponding field polarization
is presented. Subsequently, an intensity mapping of the SPR field on the circu-
lar grating (CG) is hypothezized and further explored under varying polarization
environments. Lastly, the rigorous coupled wave analysis (RCWA) algorithm is
introduced for completeness in justifying simulation results for various gratings.

For the remainder of this chapter, bold cased lettering describes a vector and
additionally , X̃, represents a complex valued vector. X̄ will represent a matrix,
and scalars will have standard cased font.

2.1 Light as EM Waves

Maxwell’s equations, originally written as a set of integral equalities, were highly
criticised for their abstract nature and ill-practical use. However, they have been
shown to have great use in theoretical and experimental sectors of science and
remain a standard of theoretical physics[68]. The following section will explore
the derivation of EM waves and their properties applied throughout this thesis.
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2.1.1 Maxwell’s Equations in Generality

The differential form of Maxwell’s equations shown below are obtained through
the use of Gauss’s divergence and Stoke’s Theorem[68]:

∇ ·E =
ρf
ε

(2.1.1)

∇ ·H = 0 (2.1.2)

∇×E = −µ∂H

∂t
(2.1.3)

∇×H = Jf + ε
∂E

∂t
(2.1.4)

where E is the electric vector field, H is the vector magnetic field, and ρf and Jf
are the total free charge and current density respectively, both reducing to zero in
a vacuum. ε is the electric permittivity, ω = 2πν, where ν is simply the frequency
of the electric field with unit s−1. This function reduces to the constant electric
permittivity of free space (ε0) in a vacuum. For the remainder of the thesis, only
non-magnetic materials will be considered with the permeability of free space
µ = µ0.

2.1.2 EM Waves in a Vacuum

Maxwell’s equations in a vacuum reduce to Eq.’s 2.1.5 - 2.1.8:

∇ ·E = 0 (2.1.5)

∇ ·H = 0 (2.1.6)

∇×E = −µ0
∂H

∂t
(2.1.7)

∇×H = ε0
∂E

∂t
(2.1.8)

Taking the curl of both Eq. 2.1.7 and Eq.2.1.8, and substituting Eq. 2.1.5 and
Eq. 2.1.6 into the operator identity ∇× (∇×) = ∇(∇·)−∇2:

∇2E = µ0ε0
∂2E

∂t2
, ∇2H = µ0ε0

∂2H

∂t2
(2.1.9)

A set of partial differential equations (PDEs) is found in Eq. 2.1.9, only considering
the ‘forward’ propagating plane-wave solutions of the electric and magnetic fields
in Eq. 2.1.10. It is important to note the solutions of the PDE are complex valued
in general, where the real component (Re{}) of the fields are the constituents of
the measurable ‘observables’.

Ẽ(r, t) = Re
{

Ẽ0e
i(k·r−ωt)

}
, H̃(r, t) = Re

{
H̃0e

i(k·r−ωt)
}

(2.1.10)
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where k = 2π
λ k̂ is the wave vector in a vacuum, λ is the wavelength of the fields,

k̂ is the unit vector in the direction of the propagation of the wave front and r is
a vector pointing to a position in space. Note the amplitudes are independent of
time for a monochromatic wave.

Substituting Eq.’s 2.1.10 back into Eq.’s 2.1.9,

|k|2Ẽ0 = ω2µ0ε0Ẽ0, (2.1.11)

by elimination, ω = c|k|, where c = 1/
√
µ0ε0 is the speed of light in a vacuum. If

it’s presupposed that the plane waves described in Eq. 2.1.10 are travelling in the z-
direction with constant phase wave fronts in the xy-plane then by Eq.’s 2.1.5, 2.1.6,
it is necessary that,

(Ẽ0)z = (H̃0)z = 0 (2.1.12)

it can be seen from Eq. 2.1.12 that EM waves are transverse in a vaccum since the
magnetic and electric fields oscillate in a plane perpendicular to the propagation
direction of the wave. Moreover by Eq. 2.1.7, the magnetic field is mutually or-
thogonal to the electric field and the direction of propagation as seen in Eq. 2.1.13:

H̃0 =
1

cµ0
(ẑ× Ẽ0). (2.1.13)

Electric and magnetic fields travelling in an arbitrary direction in space can
be represented then as follows in Eq. 2.1.14 and Eq. 2.1.15,

Ẽ(r, t) = Re
{
Ẽ0e

i(k·r−ωt)
}

n̂, (2.1.14)

H̃(r, t) = Re
{
H̃0e

i(k·r−ωt)
}

k̂× n̂ =
1

cµ0
k̂× Ẽ, (2.1.15)

where n̂ is the unit vector defined by the direction of the electric field vector which
will later be addressed as the direction of polarization. It is important to note
that only the real part of the fields are measureable.

2.1.3 Energy and Intensity

Electromagnetic radiation is quantized in quantum particles known as photons
with energy proportional to the frequency of the field oscillation. In a classical
environment where a large number of photons are used in practice, the total
energy becomes statistical and the energy of a classical wave is resolved.

Poynting’s Theorem proves that the energy flux of an electromagnetic system
is defined by the Poynting vector in Eq. 2.1.16:

S(t) ≡ Ẽ(r, t)× H̃(r, t), (2.1.16)
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A single measurement of the frequency of optical light (∼ 5×1010 Hz) will often
encompass many oscillations, therefore the periodic term in the energy density
equation is time-averaged using integration over a complete cycle and divided by
the period of oscillation. The brackets 〈−〉 are used to denote the time-averaged
vector over a single cycle in a periodic system. Substituting the expressions of
the fields in Eq’s. 2.1.14, 2.1.15 into Eq. 2.1.16, the following expression for the
Poynting vector of a monochromatic plane wave is shown, where the observable
(real) components of the field are given by the identity Re{a} = (a+a∗)/2 where
∗ denotes the complex conjugate:

S(t) = Re
{
Ẽ0e

i(k·r−ωt)
}
Re
{
H0e

(k·r−ωt)
}

n̂× (k̂× n̂)

=
(1

2
(Ẽ0e

i(k·r−ωt) + Ẽ∗0e
−i(k·r−ωt))

1

2
(H̃0e

i(k·r−ωt) + H̃∗0e
−i(k·r−ωt))

)
n̂× (k̂× n̂)

=
1

2

(1

2
(Ẽ0H̃

∗
0 + Ẽ∗0H̃0) +

1

2
(Ẽ0H̃0e

2i(k·r−ωt) + Ẽ∗0H̃
∗
0e
−2i(k·r−ωt))

)
n̂× (k̂× n̂)

=
1

2

(
Re
{
Ẽ0H̃

∗
0

}
+Re

{
Ẽ0H̃0e

2i(k·r−ωt)
})

n̂× (k̂× n̂)

=
1

2

(
Re
{
Ẽ0H̃

∗
0

}
+Re

{
Ẽ0H̃0e

2i(k·r−ωt)
})

k̂, (2.1.17)

where the vector identity n× (k×n) = (n ·n)k− (n · k)n is used from n · k = 0.
The time-cycle average of the Poynting Vector in Eq. 2.1.17 can be calculated

using the linearity of the intergal, the cancellation of a harmonic cycling of the
period, and the fact that in a vacuum the wave vector (k) is independent in time.

〈S〉 =
1

T

∫ T

0
Ẽ(r, t)× H̃(r, t)dt

=
1

T

∫ T

0

1

2

(
Re
{
Ẽ0H̃

∗
0

}
+Re

{
Ẽ0H̃0e

2i(k·r−ωt)
})
dtk̂

=
1

2
Re
{
Ẽ0H̃

∗
0

}
k̂ =

1

2
Re
{

Ẽ0 × H̃
∗
0

}
, (2.1.18)

Eq. 2.1.18 for the time-averaged Poynting vector can be simplified even further,
defined as the Irradiance of an EM wave in a vacuum:

|〈S〉| = 1

2
cε0E0

2 =
1

2
cε0〈Ẽ · Ẽ〉 ≡ I, (2.1.19)

where the equlity, 1/cµ0 = cε0,and the inner product in the complex vector field,
a · b ≡∑j aib

∗
j has been used.

2.1.4 Interference of Electromagnetic Waves

The PDEs in Eq. 2.1.9 are linear, thus the superposition of two solutions is also
a solution. Meaning, if two waves are superimposed on a single point in space
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the fields are summed. Assuming the frequency of each field are identical the
following interference profile can be derived:

E1 = E01e
i(k1·r1−ω1t), E2 = E02e

i(k2·r2−ω2t−δ0), (2.1.20)

Er′ = E1 + E2, (2.1.21)

where δ0 is a phase shift with respect to the interfering field. Substituting
Eq. 2.1.21 into Eq. 2.1.19 results in the following Eq. 2.1.22 for the intensity,

Ir′ =
1

2
cε0〈Ẽr′ · Ẽr′〉

=
1

2
cε0〈(Ẽ1 + Ẽ2) · (E1 + E2)〉

=
1

2
cε0(〈Ẽ1 · Ẽ1〉+ 〈Ẽ2 · Ẽ2〉+ 〈Ẽ1 · Ẽ2〉+ 〈Ẽ2 · Ẽ1〉)

=
1

2
cε0(E2

01 + E2
02 + 〈Ẽ1 · Ẽ2〉+ 〈Ẽ2 · Ẽ1〉), (2.1.22)

where Ẽ01 =
∑

j Ẽ01,jẼ
∗
01,j and Ẽ01,j are the components of the vector Ẽ01; Ẽ02

follows in structure.

〈Ẽ1 · Ẽ2〉 = Re
{(∑

j

Ẽ01,jẼ
∗
02,j

)
〈ei(∆k·r−∆ωt+δ0)〉

}
, (2.1.23)

where ∆k = k1−k2,∆ω = ω1−ω2. If we consider an interference of two frequency
matched monochromatic waves with identical amplitudes, then ∆ω = 0. With
this assumption Eq. 2.1.23 is written:

〈Ẽ1 · Ẽ2〉+ 〈Ẽ2 · Ẽ1〉 = Re
{(∑

j

Ẽ12,j

)
〈eiδ〉

}
+Re

{(∑
j

Ẽ21,j

)
〈e−iδ〉

}
=

1

2

(∑
j

Ẽ12,j〈eiδ〉+
∑
j

Ẽ∗12,j〈e−iδ〉
)

+
1

2

(∑
j

Ẽ21,j〈e−iδ〉+
∑
j

Ẽ∗21,j〈eiδ〉
)
,

(2.1.24)

where Ẽ12,j = Ẽ01,jẼ
∗
02,j , Ẽ21,j = Ẽ02,jẼ

∗
01,j and δ = ∆k · r− δ0. It can be easily

seen that Ẽ∗12,j = Ẽ21,j for all components. Using this identity the following
simplification is made:

〈Ẽ1 · Ẽ2〉+ 〈Ẽ2 · Ẽ1〉 =
∑
j

Ẽ12,j〈eiδ〉+
∑
j

Ẽ∗12,j〈e−iδ〉

=2Re
{∑

j

Ẽ12,j〈eiδ〉
}

=2Re
{∑

j

Ẽ12,je
iδ
}
, (2.1.25)
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where the final step, removing the time-cycle averaging operator around the pha-
sor is justified since the argument in the exponential is independent of time.
Specifically Eq. 2.1.25 shows a phase dependence arising from the interference
of the two wavevectors (∆k). Abstracting Eq. 2.1.25 by generalizing the value∑

j Ẽ12,j = Ẽ12 = E′12 + iE′′12, and transforming the complex value:

Ẽ12 =|Ẽ12|eiϕ (2.1.26)

|Ẽ12| = ((E′12)2 + (E′′12)2)
1
2 ϕ = atan2(E′′12, E

′
12)

Where the atan2(x, y) function is defined in Appendix 1. Eq. 2.1.26 is substitued
into the expression in Eq. 2.1.25:

2Re
{∑

j

Ẽ12,je
iδ
}

=2Re
{
Ẽ12e

iδ
}

=2|Ẽ12|Re
{
ei(δ+ϕ)

}
=2|Ẽ12| cos (δ + ϕ) (2.1.27)

Substituting Eq. 2.1.27 into the expression in Eq. 2.1.22 the following expression
for the Intensity of interferring identical monochromatic is obtained:

Ir′ = cε0

(1

2
(E2

01 + E2
02) + |Ẽ12| cos (δ + ϕ)

)
(2.1.28)

It can be seen by inspection of Eq. 2.1.25that if the electric field vector of the
interfering beams are identical, then the Intensity pattern is given by the following:

Ir′(E01, E01) = cε0E
2
01(1 + cos δ) (2.1.29)

Therefore under coherent conditions of an interfering beam with an identical elec-
tric field vector amplitude, then the Intensity would oscillate, between the closed
bounds [0, 2cε0E

2
01], with period (λI) defined by the wavevector:

λI =
2π

∆k · r (2.1.30)

2.1.5 Polarization and its Representations for a Monochromatic
Wave

By convention, the polarization is defined by the direction of the electric field vec-
tor over a complete cycle. There are two widely used polarization representations
shown below.
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2.1. Light as EM Waves

Jones Representation

A plane wave is linearly polarized when the electric field oscillates along a single
dimension as shown in Eq. 2.1.31 where a plane wave described is propagating in
the positive z-direction and oscillating along the x-direction:

Ẽ(z, t) = E0e
i(kz−ωt+φ)x̂, (2.1.31)

where φ is a phase shift. If two orthogonal linearly polarized electric fields with
identical frequencies interfere, the resulting polarization is determined by the
phase difference of the summed fields:

ET (z, t) = E0xe
i(kz−ωt+φ1)x̂ + E0ye

i(kz−ωt+φ2)ŷ (2.1.32)

= (E0xe
iφ1 x̂ + E0ye

iφ2 ŷ)ei(kz−ωt) (2.1.33)

Extracting the harmonic component in Eq. 2.1.33 results in a simplification of the
expression as shown in Eq. 2.1.36,

Es = E0xe
iφ1 x̂ + E0ye

iφ2 ŷ (2.1.34)

= E0xe
iφ1

[
1
0

]
+ E0ye

iφ2

[
0
1

]
(2.1.35)

=

[
E0xe

iφ1

E0ye
iφ2

]
, (2.1.36)

where Eq. 2.1.36 is called the Jones vector and represents 2D polarization states
with components being complex in general.

When the phase difference (∆φ), as defined in Eq. 2.1.37

∆φ = φ2 − φ1 ≡ φ, (2.1.37)

is equivalent to an odd multiple of π
2 ( mπ/2; m = Zodd) and the amplitudes of

the two components are equivalent, the resulting electric field will be circularly
polarized.

A superposition of two normalized fields with an identical frequency is repre-
sented as an addition of their corresponding Jones vector. As shown in Fig. 2.1,
a superposition of oppositely handed circular polarizations will interfere and will
generate a LP beam.
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2.1. Light as EM Waves

Figure 2.1: Normalized Jones vector addition with a graphic representation with a
coordinate reference frame

A Jones matrix J̄ often thought of as a transfer function representing a polar-
ization transformation due to, in general, the anisotropy of the refractive index of
the optical element[69]. When a field passes through a non-attenuative optical el-
ement, the state of the field and its corresponding polarization will be transformed
and is represented by a 2x2 matrix as shown in Eq. 2.1.38

J̄ =

[
a11 a12

a21 a22

]
(2.1.38)

A rotation of a Jones matrix by an angle θ is represented mathematically by
Eq. 2.1.39, where the set of unitary rotation matrices are shown in Eq. 2.1.40:

J̄
′
= R̄(θ)J̄R̄

−1
(θ) (2.1.39)

R̄ =

[
cos θ − sin θ
sin θ cos θ

]
R̄
−1

=

[
cos θ sin θ
− sin θ cos θ

]
(2.1.40)
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2.1. Light as EM Waves

Stokes Parameters and Poincaré Sphere

Jones vectors can only represent fully polarized fields, as unpolarized EM fields do
not have a statistically preferential polarization direction over a single or multiple
cycles. A more complete polarization space can be fully realized using a set of
parameters (Stokes Parameters) which can be derived from a normalized ellipsoid
space and coordinately transformed into a natural spherical coordinate system
(Poincaré Sphere).

Without loss of generality, polarized EM fields can be represented as a polar-
ization ellipse, characterized by the field amplitudes and a phase difference of the
orthogonal field components similar to the Jones formulation,

Ex = E0x cos(τ + φ1) Ey = E0y cos(τ + φ2), (2.1.41)

with a change of variables given by Eq. 2.1.42:

τ = kz − ωt (2.1.42)

Through some manipulation, the set of parametric equations in Eq. 2.1.41 are
reformulated into Eq.’s 2.1.43, 2.1.44 using the angle-sum identity (cos(α+ β) =
cos(α) cos(β)− sin(α) sin(β)):

Ex
E0x

= cos(τ) cos(φ1)− sin(τ) sin(φ1) (2.1.43)

Ey
E0y

= cos(τ) cos(φ2)− sin(τ) sin(φ2) (2.1.44)

Where through cancellation and use of the angle-difference identity the following
equations are derived:

Ex
E0x

sin(φ2)− Ey
E0y

sin(φ1) = cos(τ) sin(φ2 − φ1), (2.1.45)

Ex
E0x

cos(φ2)− Ey
E0y

cos(φ1) = sin(τ) sin(φ2 − φ1). (2.1.46)

Squaring and adding Eq. 2.1.45 and Eq. 2.1.46, the unique form of a conic
section (Ax2 + Bxy + Cy2 = D) with respect to the polarization components is
formed,

(
Ex
E0x

)2 − 2
Ex
E0x

Ey
E0y

cos(φ) + (
Ey
E0y

)2 = sin2(φ), (2.1.47)

where φ is defined by Eq. 2.1.37. Since the discriminant (B2−4AC) of Eq. 2.1.47
is negative the polarization equation uniquely forms an ellipse[70]. In general the
ellipse axes will not fall directly on the coordinate axes, therefore special care of
this case is shown, where the field vectors are defined in terms of the orientation
of the principal axes of the ellipse shown in Fig. 2.2.
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2.1. Light as EM Waves

Figure 2.2: 2D cross section of an off-axes orientated ellipse

The polarization fields in Eq. 2.1.41 can be rotated around the out of plane
axis as shown in Eq. 2.1.48:

Ex′ = Ex cos(ψ) + Ey sin(ψ) Ey′ = −Ex sin(ψ) + Ey cos(ψ), (2.1.48)

The set of parametric equations in Eq. 2.1.49 uniquely represent the general ellipse
on condition that E0x′ ≥ E0y′ :

Ex′ = E0x′ cos(τ + φ0) Ey′ = ±E0y′ sin(τ + φ0) (2.1.49)

Some more manipulation of these set of independent equations describing a ro-
tated ellipse in Eq.’s 2.1.48, 2.1.49 can be seen in Appendix B; using familiar sum
and difference-trigonometric identities the following equalities are obtained[70]:

E2
0x′ + E2

0y′ = E2
0x + E2

0y (2.1.50)

tan 2ψ = tan(2α) cos(φ) (2.1.51)

sin 2χ = sin(2α) sin(φ) (2.1.52)

where α, χ are auxillary angles defined by Eq. 2.1.53:

tanα =
E0y

E0x
tanχ = ∓E0y′

E0x′
(2.1.53)

Polarization was mathematically defined by G.G.Stokes when first trying to un-
derstand intensity measurements with unpolarized light. A set of parameters in
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2.1. Light as EM Waves

Eq. 2.1.54 first defined by G.G. Stokes fully describe 2D polarization states of a
plane wave[71].

S0 = E2
0x + E2

0y

S1 = E2
0x − E2

0y

S2 = 2E0xE0y cos(φ)

S3 = 2E0xE0y sin(φ) (2.1.54)

The stokes parameters ,S0, S1, S2, S3, are proportional to the total intensity, hori-
zontally linearly polarized intensity, intensity of linearly polarized light at 45o from
horizontal, and right circularly polarized intensity of the plane wave respectively.
S0 is dependent on the three other parameters(S1, S2, S3), S2

0 = S2
1 + S2

2 + S2
3 ,

unique to a construction of a 3D sphere with the Euclidean norm shown in Fig. 2.3.
The spherical relationship is precisely defined by a change of variables given by
Eq. 2.1.55[70]:

S1 = S0 cos 2χ cos 2ψ

S2 = S0 cos 2χ sin 2ψ

S3 = S0 sin 2χ (2.1.55)

where ψ defines the angle of orientation of the ellipse in the plane as shown in
Fig. 2.2 and χ describes the ellipticity by the magnitude (|χ| = π/4 circularly po-
larized light, 0 < |χ| < π/4 represents elliptical polarizations), and the handedness
by the sign (-:left-handedness,+:right-handedness). Handedness is the descriptor
of the rotation direction around the axis of propagation when observing from the
direction of the beam, where right-handed and left-handed light would have an
electric field moving in the clockwise direcction and counter-clockwise direction
respectively.
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2.1. Light as EM Waves

Figure 2.3: Figure of the Poincaré sphere

2.1.6 Radial and Azimuthal Polarization

The Helmholtz equation, (∇2 + k2)E = 0, has an infinite set of solutions in the
paraxial approximation (assuming rays make a small angle from the optical axis)
given by Eq. 2.1.56,

E = u(x, y, z)ei(kz−ωt), (2.1.56)

where the plane wave solution in Eq. 2.1.10 is characterized by a constant spa-
tial amplitude u(x, y, z) = E0. More classes of solutions are derived by substi-
tution of Eq. 2.1.56 into the Helmholtz equation, assuming separation of vari-
ables (u(x, y, z) = u(x)u(y)u(z)), and the slowly-varying envelope approximation
(SVEA), where the SVEA simply assumes that the amplitude of the electric field
oscillates slowly:

|∂
2u

∂z2
| << |k∂u

∂z
|, |∂

2u

∂z2
| << |k2u| (2.1.57)

In other words, the inequality in Eq. 2.1.57 allows for the higher order derivatives
of the field in the direction of propagation to be neglected, and the following
simplification of the Helmholtz PDE shown in Eq. 2.1.58:

∇2
⊥u+ 2ik

∂u

∂z
= 0, (2.1.58)

where ∇⊥ = ∂2/∂x2 + ∂2/∂y2

Under cartesian coordinates the class of solutions are called the Hermite-
Gaussian (HG) modes with symmetries along the x and y axes. Whereas cylindri-
cal coordinate systems (u → u(r, φ, z)) generate a couple of classes of solutions,
including the Laguerre-Gaussian (LG) modes which have a ‘vortex’ term (eilφ)
and the Bessel-Gaussian (BG) modes which are independent of the azimuthal an-
gle (u → u(r, z)).These cylindrical coordinate beams are naturally called CVBs
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2.1. Light as EM Waves

and have been applied frequently, especially in regards to the LG modes’ eilφ term
where l is directly linked with the presence of angular momentum in a photon[72].

CVBs and their corresponding polarization states have been rigourously stud-
ied for their angular momentum and focal point compression properties. Using
vectorally inclusive theories derived from Maxwell’s Equations,∇×∇×E−k2E =
0, it’s known that the first LG modes have radial and azimuthal polarization
states[31].

Higher Order Poincaré Sphere

In the past decade a theoretical framework of observable Stokes’-like parameters
for beams with orbital angular momentum (OAM). Specifically a model framework
for generalizing a CVB’s Stokes vector via a change in basis of polarization includ-
ing both the spin angular momentum (SAM) of circular polarization and orbital
angular momentum from the phase singularitites associated with a helical phase
front of the electric field[73]. Geometric phases have been introduced through
the lens of a higher-order Poincaré sphere (HOPS) models and geodesics traced
from transformations of stokes parameters. This framework has been shown to
be exploited in intracaivity devices where the alteration of the geometric phase
allows for pure excitation of laser beams with OAM[74].

2.1.7 Gratings and Interference Lithography

Gratings create a periodic variation in a media utilizing the diffractive properties
of a wave, splitting the far field intensity into a wavelength dependent spatial
period defined by Eq. 2.1.59:

Λ(sin θm ± sin θi) = mλ; m = 0,±1,±2, ... (2.1.59)

Λ is the period of the grating, θm is the angle of the m-th diffractive mode and θi
is the angle of incidence onto the grating from the normal surface.

The intensity-polarization response of an azopolymer film enables the creation
of SRGs via an interference lithographic configuration and a coherent light source
with wavelength λbeam. If the inscribing beam is collimated and centered on a
truncated conic mirror (circular diffraction grating generator (CDG)), concentric
rings of periodic intensity with a constant period given in Eq. 2.1.60 will be
produced at the plane of interference shown in Fig. 2.4:

Λ = λbeam csc 2θcdg (2.1.60)

where θcdg is the nominal angle of the cone shown in Fig. 2.4.
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2.2. EM Fields in Linear Media

Figure 2.4: Cross section of the CDG

Adding a lens prior to the CDG produces chirped SRGs. The chirped pitch
decreases from the center when the focal point lies ahead of the interference plane
(diverging) and increases from the center when the focal point lies behind the
interference plane (converging). The chirped pitch equation is transcendental
including parameters such as the location of the focal point (s), width of the
small aperature (m) and the distance from the center(δc). The pitch prediction
can be solved numerically through ray tracing simluations[61].

In Appendices 1.A, a novel proof of Eq. 2.1.60 is shown, where Eq. 2.1.30 is
used to derive the periodic relationship in Eq. 2.1.60. This approach condenses
the original proof and follows a similar wavevector approach shown previously in
work with linear gratings on Lloyd mirror setups[75]. The wavevector approach
allows an analysis of the interference pattern on varying planes of interference.

2.2 EM Fields in Linear Media

A material’s free charge carriers (electrons) characterize the materials ability to
polarize an electric field, either static or transient.

In a homogeneous, isotropic, and linear dielectric media, the polarizability of
a material in a static elecric field is defined by:

P = ε0χeE, χe = 1− εr, (2.2.1)

where χe is the electric susceptibility and εr = ε/ε0 is the relative permittivity. In
a changing electric field, as is the case with electrogmagnetic radiation, a general
time-dependent formulation of the polarizibility is given as a convolution:

P(t) = ε0

∫ t

−∞
χe(t− t′)E(t′)dt′. (2.2.2)
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2.2. EM Fields in Linear Media

In a linear system, the fourier transform of Eq. 2.2.2, by the convolution theorem,
is given by:

P(ω) = ε0χe(ω)E(ω). (2.2.3)

As shown in Eq. 2.2.1, the electric susceptibility is related to the relative permit-
tivity (εr). Therefore it is noted that the permittivity is frequency dependent,
represented as a phase shift or simply a complex function dependent on the an-
gular frequency:

ε = ε′ + iε′′ = ε′ + i
σ

ω
, (2.2.4)

where i is the imaginary unit and σ is the conductivity of the material.
In lossless dielectrics, the imaginary part of the dielectric permittivity is neg-

ligible (σ/ω << 1) and the polarization of the field is determined by Eq. 2.2.1.
In a classical conductor the imaginary part of the dielectric permittivity is non-
negligible (σ/ω >> 1) and represented as a complex number in Eq. 2.2.4.

2.2.1 Drude Theory of Metals

The Drude theory of metals is a classical description of free non-interacting
charged particles in a matrix of fixed oppositely charged massive particles. Colli-
sions cause a damping force on the electrons represented in Eq. 2.2.5,

Fe = FDriving + FDamping =⇒ me〈v̇〉 = −eE−meγ〈v〉, (2.2.5)

where γ = 1
τc

, me is the mass of the electron, e is the elementary charge, τc is the
average time between collisions, v and v̇ is the velocity and its time derivative
(acceleration) of the electrons respectively. The electric field can be expressed as
E = Re(E0(ω)e−iωt) and substituted into Eq. 2.2.5:

me(〈v̇〉+
1

τ
〈v〉) = −eE =⇒ 〈J̇〉+

1

τ
〈J〉 =

Ne2

me
E (2.2.6)

Equation 2.2.5 is rearranged and multiplied by Ne to both sides in Eq. 2.2.6,
where N is the number of electrons in the system. The result is a differential
equation of the current density(〈J〉 = Ne〈v〉), where J has the same frequency as
the driving electric field as expressed in Eq. 2.2.7:

J = Re(J0e
−iωt) (2.2.7)

Substituting Eq. 2.2.7 into Eq. 2.2.6 and isolating for the current density the
following expression is found,

J(ω) =
Ne2/me

1/τ − iωE, (2.2.8)

where by use of Ohm’s law the conductivity is further obtained in Eq. 2.2.9:

σ(ω) =
Ne2τc/me

1− iωτc
(2.2.9)
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2.2.2 Plasma Frequency and Dispersion in a Drude Metal

The wave front propagation and its dependency on the frequency of the propaga-
tive mode is referred to as the disprsion relationship of a material. Assuming all
coordinate axes for interferring beams are congruent, then the defining character-
istics of a propagative mode are k, ω and the polarization which determine the
space-time evolution of the EM field.

The complex dielectric function for a Drude metal is derived using Eq. 2.1.4
and Eq. 2.2.9,

ε = (εB −
ω2
pτ

2
c

1 + ω2τ2
c

) + i(
ω2
pτ

2
c

ωτc + ω3τ3
c

), (2.2.10)

where εB is the dielectric contribution from bound electrons and ω2
p = Ne2

ε0me
is

the bulk plasma frequency. When ωτc >> 1 Eq. 2.2.10 is approximated by the
following expression:

ε ≈ εB −
ω2
p

ω2
(2.2.11)

If
ω2
p

ω2 >> 1 and |εB| ∼ O(1) then ε′ < 0.
Helmholtz’s equation and its solutions enforce the equality, ω2εr = c2k2. Sub-

stituting Eq. 2.2.11 into the preceeding equality and rearranging gives the disper-
sion relationship for bulk plasmons,

ω = ε
−1/2
B

√
ω2
p + c2k2, (2.2.12)

where εr = ε/ε0 is the relative permittivity.

2.3 Surface Plasmons and Photon Coupling

Drude metals have been shown to have a negative real component of the electric
permittivity in the optical and infrared regime. Physically, this represents a reflec-
tion of the photons at the surface caused by the free electrons in the metal. The
imaginary component in the dielectric function represents the attenuation of the
photons in the bulk metal. Bound modes of the EM field can occur at the surface
of a metal-dielectric interface, subsequently producing a field enhancement at the
surface[1].

The bound modes are generated by charge density oscillations at a metal-
dielectric interface called surface plasmons (SPs).
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2.3.1 Boundary Conditions and Surface Plasmons

The permittivity at the boundary for a flat dielectric-metal is given by,

ε(y) =

{
εm y ≤ 0

εd y ≥ 0,
(2.3.1)

where εm, εd are the dielectric functions of the metal and dielectric respectively.

+++++ - - - - -

y

x- - - - -

Figure 2.5: Cross-section representation of the electrical fields in a bound SPR mode
by interacting free electrons

The fields for the SP mode have a bound, oscillatory component at the surface
with an evanescent component away from the surface, written below (and shown
in Fig. 2.5):

Ẽ =

{
Ẽ0,me

i(kx,mx+iky,my) y ≤ 0

Ẽ0,de
i(kx,dx+iky,dy) y ≥ 0

(2.3.2)

H̃ =

{
H̃0,me

i(kx,mx+iky,my) y ≤ 0

H̃0,de
i(kx,dx+iky,dy) y ≥ 0

(2.3.3)

The complex amplitudes and wave vectors in Eq.’s 2.3.2, 2.3.3 are specified with
subscripts to denote the occupying media of the fields (‘m’,‘d’):

Ẽ0 = [Ex, Ey, 0], H̃0 = [0, 0, Hz] (2.3.4)

Using limiting conditions at the interface dictated by Maxwell’s equations, the
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2.3. Surface Plasmons and Photon Coupling

following boundary equalities must be satisfied[1]:

Ẽx(y → 0−) = Ẽx(y → 0+) (2.3.5)

H̃z(y → 0−) = H̃z(y → 0+) (2.3.6)

εmẼy(y → 0−) = εdẼy(y → 0+) (2.3.7)

Substituting the fields in Eq. 2.3.2 into Eq. 2.3.5 and evaluating:

Ẽx(x→ 0, y → 0−) = Ẽx(x→ 0, y → 0+) =⇒ Ex,m = Ex,d, (2.3.8)

the wave vector tangent to the surface is given by:

kx,m = kx,d ≡ kx. (2.3.9)

Using Eq. 2.1.4 and substituting the SP fields of Eq. 2.3.2 into Eq. 2.3.7 the wave
vector relationship normal to the surface is given by:

ky,m
εm

=
ky,d
εd

. (2.3.10)

Eq. 2.3.11 and Eq. 2.3.9 are derived with the assumption of a zero surface charge
and current density environment, and is valid in a field averaged approximation
along the whole surface.
The Helmholtz equation and its general solutions provide the dispersion relation-
ship for a non-magnetic material media found in Eq. 2.3.11:

k2
(d,m) = k2

x + k2
y,(d,m) = ω2µ0ε(d,m) (2.3.11)

The SP wave vector can be isolated in the form where k = k′ + ik′′, using

Eq.’s 2.3.10, 2.3.11 and with help of identity
√
a+ ib = ±

(√
|z|+a

2 + i b|b|

√
|z|−a

2

)
:

k′x =
ω

c

[
εr,d

(ε′r,m + εr,d)2 + (ε′′r,m)2

] 1
2

·

ε2r,c +
√
ε4r,c + (ε′′r,mεr,d)

2

2


1
2

(2.3.12)

k′′x =
ω

c

[
εr,d

(ε′r,m + εr,d)2 + (ε′′r,m)2

] 1
2

·

 (ε′′r,mεr,d)
2

2(ε2r,c +
√
ε4r,c + (ε′′r,mεr,d)

2)

 1
2

(2.3.13)

ε2r,c = (ε′r,m)2 + (ε′′r,m)2 + εr,dε
′
r,m (2.3.14)

The subscript ‘r’ denotes the relative permittivity for both the dielectric and
metal. Assuming ε′′r,m << ε′r,m, Eq.’s 2.3.12, 2.3.13 can be approximated as fol-
lows:
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k′x ≈
ω

c

(
εr,dε

′
r,m

εr,d + ε′r,m

) 1
2

(2.3.15)

k′′x ≈
ω

c

(
εr,dε

′
r,m

εr,d + ε′r,m

) 3
2 ε′′r,m
ε′r,m

(2.3.16)

A bounded mode exists if k′x is real which is true when |ε′r,m| > εd and ε′r,m < 0.
The latter is shown to be true in a Drude metal when ω < ωp and the former can
be chosen appropriately by design. The real and imaginary wave vector compo-
nents of the SP mode represent the propagation and the attenuation of the wave
respectively. An expression for the evanescent wave vector away from the surface,
ky,(m,d), can be derived in a similar manner[1].

The dispersive nature of an SP mode on a flat surface in Eq. 2.3.15 is incon-
sistent with light in a homogeneous material. In other words, light incident on
a flat metal-dielectric surface will not couple to the SP mode. Therefore other
methods must be used to excite a surface plasmon resonance (SPR).

2.3.2 Surface Plasmon Resonance and Grating Coupling

SPRs occur when photons couple to the SP mode creating a quasiparticle which
reradiates an enhanced field at the coupling wavelength. Metallic layered SRGs
have the ability to excite an SPR response as will be discussed next.

Using the grating equation in Eq. 2.1.59, the wavevector of incident light on
an SRG is

klight = k sin θi +K, (2.3.17)

where K = 2π/Λ, Λ is the pitch of the grating, θi is the projected angle with
respect to the grating vector (GV) and k =

√
ε′r,mk0. Substituting Eq. 2.3.15 into

2.3.17 and rearranging for the coupling wavelength (λSP ) results in the equation:

λSP = nd

(√
ε′r,m

n2
r,d + ε′r,m

∓ sin(θi)

)
Λ, (2.3.18)

where nd is called the refractive index of the dielectric and is related to the
permittivity by nd =

√
εd. The coupling of photons to the SP mode require

an electric field in the direction of the GV, and therefore only light polarized
parallel to the GV will induce an SPP excitation. The equality in Eq. 2.3.18 is
an approximation to the wavelength derived from a perfectly flat surface. The
approximation fails when the depth of the grating is a significant percentage of
the relative coupling wavelength[1].

To add context to the following conversation on polarization conversion via
SP coupling, and experimental results using beams with both OAM and SAM
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to induce SPP on circular gratings; the geometric phase associated with polar-
ization transformations and the curvature of the Poincaré sphere is conserved in
the, light→ SPP→ light, process[76]. This is something to keep in mind when
discussing intensity measurements of the SPP intensity profile.

2.3.3 Circular Symmetry on SPP Polarization

A linear grating has an unchanging cross section producing a constant surface
plasmon resonance (SPR) response with linear polarization at the coupling wave-
length. In comparison, a CG has a GV which rotates around the center and an
SPR intensity corresponding to the projection of the polarization on the GV, rep-
resented in Fig. 2.6.

A low curvature region on a circular grating can be approximated as a lin-
ear grating and loses validity when the curvature increases towards the center
of the CG. Consider a linearly polarized beam along the y-axis with the desired

Figure 2.6: Representation of a Linearly Polarized Beam’s Electric Field (red), and the
normalized GV (blue) for a circular grating with a normal boundary (dashed)

SP wavelength (λSP ) covering the surface of a circular grating shown in Fig. 2.6.
The intensity of the SPR should be greatest along the y-axis, decreasing as the
component of the electric field projected onto the GV decreases to zero along the
x-axis.

The linearly polarized field shown in Fig. 2.6 is described in polar coordinates,
expressing the electric field in terms of the coupling (ESPR) and non-coupling
(ENC) components in Eq. 2.3.19. The coordinate transformation of cartesian to
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polar coordinate system in Eq. 2.3.19 creates a singularity at the origin where
the electric field isn’t defined even though the pre image of the field is uniquely
constant in the y-dir.:

E = E0(sin ξr̂ + cos ξθ̂) = ESPRr̂ + ENC θ̂ (2.3.19)

The magnitude of the GV can be neglected when the wavelength of the exciting
field is uniquely the coupling wavelength of the SP mode (E(λSP )). The unit
direction of the GV is then sufficient for the following discussion and provides
simplification in the form of Eq. 2.3.20:

KG = r̂ (2.3.20)

Note Eq. 2.3.19 alters the phase information of the fields outside of the quarter
plane, though it still preserves the intensity norm of the electric field and can be
simply addressed by specifying quarter plane piecewise functions correcting for
sign changes.

In Eq. 2.3.21, the angle between the GV and the field polarization is given by
the dependency of the coordinates of the GV:

ξ = arctan
y

x
(2.3.21)

The transformation of basis vectors from a cartesian to a radial coordinate system
is given in terms of Eq. 2.3.21 and shown in Eq. 2.3.22. This is important in
regards to the geometry of the grating since it allows for the separation of SPR
coupling and noncoupling components:

r̂ = cos ξx̂ + sin ξŷ θ̂ = − sin ξx̂ + cos ξŷ (2.3.22)

Substituting these unit vectors into Eq. 2.3.19 gives the following vector expres-
sions:

ÊSPR = E′SPR

[
cos ξ sin ξ

sin2 ξ

]
ÊNC = E′NC

[
− cos ξ sin ξ

cos2 ξ

]
(2.3.23)

With respect to the surface modes of the SPR, it is understood that ESPR,surface �
ENC,surface and further ESPR,T � ENC,T , where the subscript ‘T’ indicates
the transmission modes through an optically thick metallic film. It follows that
ENC,T /ESPR,T � 1 and therefore the ratio ET /ESPR,T of the transmission field
has a dominant component and can be approximated as in Eq. 2.3.24:

E ≈ ESPR, (2.3.24)

where the subscript ‘T’ is dropped for the remainder of the discussion.
The SPR fields destructively interfere in reflection,therefore with help from the
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2.3. Surface Plasmons and Photon Coupling

relationship, ESPR/ENC � 1, a discussion on the intensity profile would follow
in a similar manner.

Using the field approximation in Eq. 2.3.24 and the definition of Intensity in
Eq. 2.1.19, the intensity profile of the SPR signal is explored. It is important to
note that ESPR field is dependent on multiple parameters, including the materials
characterizing the surface, the film thickness when observing in transmission and
the surface profile. The relationship between the incident field amplitude (E0)
and the SPR field amplitude ESPR in Eq. 2.3.19 is removed from this discussion.
Therefore we will simply consider ESPR as a scalar from which it can be removed
out of the dot product when normalizing the intensity profile in Eq. 2.3.25:

I ∝
[
cos ξ sin ξ sin2 ξ

] [cos ξ sin ξ
sin2 ξ

]
= sin2 ξ (2.3.25)

Cross-sections of Eq. 2.3.25 are plotted in Fig. 2.7(a),(b) with constant y and
x coordinates respectively. These plots show that as we take horizontal cross-
sections (Fig 2.7(a)) closer to y = a = 0, the functions converge to zero everywhere
but at the origin. This is contrasted by the plots in Fig. 2.7(b) where vertical cross-
sections are plotted closer to x = a = 0. Here, the plots converge to 1 everywhere
but 0 at the origin. Therefore, it is important to note that the intensity profile in
Eq. 2.3.25 is undefined at the origin.

ISPR(x, a) = sin2 (arctan
a

x
) ISPR(a, y) = sin2 (arctan

y

a
) (2.3.26)

31



2.3. Surface Plasmons and Photon Coupling

(a) (b)

Figure 2.7: Intensity cross sections of ISPR for constant y-values (a) and x-values (b)

Geometrically, Eq. 2.3.25’s level curves lie on rays emanating from the origin.
The origin is undefined since taking different paths towards it converge to different
values as discussed previously. The discontinuous nature of the 2D-profile at
the origin creates difficulty in accurately plotting a 2D contour profile. This is
remedied by stitching together ISPR(x, a) curves as plotted in Fig. 2.7(a). The
constant horizontal cross-sections are chosen equally spaced from the interval
(−1, 1) and later meshed into a 2D contour graphs using the Plotly library in
python. Contour plots with varying incident polarization are shown in Fig 2.8.

The angle of the linearly polarized field incident on the CG should rotate the
ISPR profile. This is modelled as a phase shift in the argument of the sin2 function
in Eq. 2.3.25 and explicitly shown in Eq. 2.3.27:

I ∝ sin2 (ξ + θ0) (2.3.27)

Figure 2.8 shows the rotation of the ISPR profile with varying θ0

A second LP in series to the SPR setup is modelled using a Jones matrix of a
rotated linear polarizer. Substituting the Jones matrix for a LP beam along the
y-axis into Eq. 2.1.39 and operating it on the Jones vector in Eq. 2.3.23, excluding
ENC for reasons previously discussed on page 19, the following expression of the
SPR field between two LP ,crossed at angle θ, is given by:

ESPR,||(θ) =

[
sin2 θ sin ξ cos ξ − sin θ cos θ sin2 ξ
− sin θ cos θ sin ξ cos ξ + cos2 θ sin2 ξ

]
(2.3.28)
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2.3. Surface Plasmons and Photon Coupling

Figure 2.8: 2D contour maps of sin2 (ξ + θ0) with varying θ0: (i) 0o, (ii) 30o, (iii) 60o,
(iv) 90o

The following intensity relationship is derived by Substituting Eq. 2.3.28 into
Eq. 2.1.19:

ISPR,||(θ) ∝ sin4 θ sin2 ξ cos2 ξ + sin2 θ cos2 θ sin4 ξ − 2 sin3 θ sin3 ξ cos ξ cos θ

+ sin2 θ cos2 θ sin2 ξ cos2 ξ + cos4 θ sin4 ξ − 2 cos3 θ sin3 ξ cos ξ sin θ
(2.3.29)

The expression can be greatly simplified by considering the sum of the two lines
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2.3. Surface Plasmons and Photon Coupling

in Eq. 2.3.29 term by term

sin4 θ sin2 ξ cos2 ξ + sin2 θ cos2 θ sin2 ξ cos2 ξ

= sin2 θ sin2 ξ cos2 ξ(sin2 θ + cos2 θ) = sin2 θ sin2 ξ cos2 ξ

= sin2 θ sin2 ξ − sin2 θ sin4 ξ (2.3.30)

sin2 θ cos2 θ sin4 ξ + cos4 θ sin4 ξ = cos2 θ sin4 ξ(sin2 θ + cos2 θ)

= cos2 θ sin4 ξ (2.3.31)

− 2 sin3 θ sin3 ξ cos ξ sin θ − 2 cos3 θ sin3 ξ cos ξ sin θ

= sin3 ξ cos ξ(−2 cos θ sin θ)(sin2 θ + cos2 θ) = − sin3 ξ cos ξ sin 2θ, (2.3.32)

summing together Eq.’s 2.3.30 and 2.3.31 results in,

cos2 θ sin4 ξ + sin2 θ sin2 ξ − sin2 θ sin4 ξ

= sin2 θ sin2 ξ + sin4 ξ(cos2 θ − sin2 θ)

= sin2 ξ(sin2 θ + sin2 ξ cos 2θ), (2.3.33)

and finally summing the remaining term, Eq. 2.3.32 with Eq. 2.3.33 results in:

sin2 ξ(sin2 θ + sin2 ξ cos 2θ)− sin3 ξ cos ξ sin 2θ

= sin2 ξ(sin2 θ + sin2 ξ cos 2θ − sin ξ cos ξ sin 2θ)

= sin2 ξ(sin2 θ + sin ξ(sin ξ cos 2θ − cos ξ sin 2θ))

= sin2 ξ(sin2 θ + sin ξ sin (ξ − 2θ)) (2.3.34)

Substituting the trig identity, sinα sinβ = 1
2(cos {α− β} − cos {α+ β}), into

Eq. 2.3.34 gives the final simplification:

= sin2 ξ(
1

2
− 1

2
cos 2θ +

1

2
(cos 2θ − cos (2(ξ − θ))))

= sin2 ξ(
1

2
(1− cos (2(ξ − θ)))) = sin2 ξ sin2 (ξ − θ) (2.3.35)

Note, the effect the second LP has on the transmission mode is identical to the
SPR response on a CG from a linearly polarized field phase shifted by the angle
of the LP (θ).

ISPR,θ ∝ sin2 ξ sin2 (ξ − θ) (2.3.36)

Graphing the intensity of a cross polarized setup (θ = 90o), using the methods
previously used for Eq. 2.3.25 , the resulting intensity profile is shown in Fig. 2.9
The derivation theorizes the presence of a non-zero intensity passing through
crossed polarizers at the wavelength of the SPR. By hypothesis, this is caused by
the polarization conversion via SPR excitation.
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(a) (b)

Figure 2.9: (a)Simulation of ISPR,θ=90o(x, a) for varying a, (b) 2D contour of
ISPR,θ=90o(x,y)

2.4 Rigorous Coupled Wave Analysis (RCWA)

The RCWA method, pioneered by M.G.Moharam and T.K. Gaylord [77], ex-
presses a SRG’s dielectric function in terms of a Fourier series expansion [78],

ε(x) =
∑
h

εh exp (i
2πh

Λ
), (2.4.1)

in a region defined by the depth of the grating (d) shown in Figure 2.10. Utilizing
the symmetry of the grating in the y-direction shown in Figure 2.10, the Field
in the grating region betweeen Region I,II can be expressed as a sum of modes.
Each mode individually satisfies Maxwell’s and Helmholtz’s equations, although
differing polarization states have to be considered separately.
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2.4. Rigorous Coupled Wave Analysis (RCWA)

Figure 2.10: Planar diffraction model and the relevant parameters for the RCWA
method: d - depth of grating, E(λ0) - incident electric field, Λ - pitch of grating, θi
- angle of incidence of the electric field

Assuming separabilility of the fields in the grating region (E(x, z) = Ex(x)Ez(z))
the solutions for the amplitudes of the seperated modes are periodic with respect
to the period of the planar grating (Λ)[79]. Maxwell’s equations are used to
find the auxilliary field expansion and a set of coupled equations. The set of
coupled equations is expressed as a matrix and its eigenvalues and eigenvectors
are numerically solved and used to form the set of equations for the field ampli-
tudes in the grating region.The field amplitudes of the forward and back-diffracted
modes are found by calculating the coupling constants in the grating region and
back-substituting into boundary conditioned field equations at the grating sur-
face (z = 0, z = d). The transmission diffraction efficiencies for all modes can be
calculated using Eq. 2.4.2,

DEti = TiT
∗
i Re(

kII,zi
k0nII

cos θinc), (2.4.2)

where Ti, T
∗
i is the i-th transmitted diffraction amplitude and its complex con-

jugate respectively, and the wave vector (k`,zi) in the z-direction defined via the
Helmholtz equation and the boundaries of the grating region:

k`zi =

{
k0[n2

` − (kxi/k0)] k0n` ≥ kxi,
−ik0[(kxi/k0)− n2

` ] kxi > k0n`0 ` = I, II

nl is the refractive index of each region (I, II), k0 = 2π/λ0, λ0, θinc is the incident
field’s wavelength in free space and the angle normal to the grating’s surface
respectively and the wave vector along the grating surface is given as,

kxi = k0[nI sin θinc − i(λ0/Λ)], (2.4.3)

Eq. 2.4.3 is often referred to as the ”Floquet Condition” in the literature [78] [79].
Exact coupled equations for multi-layered gratings [80], derived by Moharam et.
al, have been used in simulation software to simulate the diffraction efficiencies
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2.4. Rigorous Coupled Wave Analysis (RCWA)

of a wide range of grating geometries[]. The convergence for accurate diffraction
amplitudes are determined by the number of harmonics retained in the original
dielectric function expansion in Eq. 2.4.1

Further work has been done for the numerical stability and speed of conver-
gence of lossy materials such as metals using efficient eigenvalue and eigenvector
computations[].
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3 Experimental Methods

3.1 Thin Film Sample Fabrication

A Disperse Red 1 (gDR1) azobenzene + mexylaminotriazine group is synthesized
according to literature [81]. The resulting powder is dissolved in a dichloromethane
solution with a 3% ratio by weight. It is then pressed through a 50 µm filter to
remove any large particulates. Soda lime glass slides were cut to dimension (3.5cm
x 3.5cm), cleaned with a household surfactant and rinsed with warm water. The
slides were hand wiped and dried with Kim wipes as to remove any remaining dust
particles left on the surface. They were then oven-dried at 100 degrees Celsius for
up to 15 minutes, making sure all water evaporated from the depositing surface.
3ml of the azobenzene mixture was deposited on each slide before being spun at
1000 RPM for 20 seconds. Each sample was then placed back into the oven at 85
degrees Celsius for 25 minutes to for total solvent evaporation. The temperature
is optimized as to prevent a phase change in the azobenzene molecules evapora-
tion of the thin film. To determine the thickness of the resulting films, a small
scratch is made in the film and the resulting groove is measured using a Dektak
Profilometer.

3.2 Interference Lithography

3.2.1 Circular Diffraction Grating Generator

Previous work accomplished the manufacturing of the CDGs, these were used
throughout this project[61].

The truncated, conical surface of the polished mirror interior of the CDG, when
illuminated at normal incidence with coherent beam, creates a circular interfer-
ence pattern. This circular interference pattern is used to inscribe surface relief
gratings on the thin films. Several variables determine the surface relief grating
profile having been previously described in literature[25][82] and involve the laser
irradiance on the film, time of inscription, initial depth of the film, and wavelength
of the inscription source. Optimization of the gratings profile and thickness of the
optically thin metallic layering is crucial to the excitation of an SPR signal. Four
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3.2. Interference Lithography

CDGs were used throughout the experiment seen in the following table,with the
dimensions labelled as seen in Fig. 2.4

CDG Small Aperture (+/-0.01 mm) Large Aperture (+/-0.01 mm) Angle (degrees)

4 11.84 18.61 24.00

5 11.12 16.25 29.42

6 11.91 16.51 27.93

7 12.14 21.82 34.33

Table 3.1: Circular diffraction grating generator parameters

Constant and chirped gratings were fabricated using the experimental setups
in Fig. 3.2 and Fig. .3 respectively.

Figure 3.1: Optical interference lithography procedure

3.2.2 Circular Diffraction Grating (Constant)

In both constant and chirped setups a coherent LP beam of known wavelength
is passed through a quarter-wave plate, inducing an active response in the azo
films when producing SRGs. As seen in Fig. 3.2, the beam is passed through a
spatial filter to smooth the beam, followed by a couple of lenses to expand and
then collimate the beam, and an adjustable iris to control the spot width. The
CDG is placed normal to the incident beam creating constant pitched circular
gratings, since all rays have identical relative wave vectors when collimated, the
interfernce pattern has a constant period.

The characteristics of the circular gratings are determined by the height and
angle of the CDG[61]. If the height of the mirror section is not at a critical height
hc then the reflected wavefront does not interfere with the center of the normally
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3.3. Surface Characterization

Figure 3.2: Constant pitch circular diffraction grating experimental setup - (a) 532nm
Coherent source laser, (b) λ/4 wave plate, (c) Spatial filter, (d) Convex lens, (e) Colli-
mating lens, (f) Variable iris, (g,h) CDG with affixed Azo sample

incident beam resulting in a flat intensity profile near the center, insribing only a
ring of gratings. However if the height of the mirror surface exceeds the critical
height then the beam interfers along the full radius inscribing gratings to the
center. If the height of the CDG exceeds the critical height then by placing a
paper placard in place of the sample interference area, the iris is adjusted to
control the width of the beam preventing overlap across the center.

3.2.3 Grating Profile Optimization

SRG’s using azo-isomerization interference lithography are dependent on both
polarization and irradiance[25]. In this study, it is necessary that we make the
gratings from 15nm - 70nm in depth, from peak to trough. To insure this is
satisfied, each film was irradiated at 300mW/cm2 for times ranging between 50-
100 seconds depending on the CDG and setup(constant/chirped). The variance
in the timing on different CDG’s likely comes from the quality of the reflective
surface as the CDG’s were made in house.

3.3 Surface Characterization

3.3.1 Atomic Force Microscope Imaging

The primary instrument used in profiling the depth and character of the SRGs was
an Atomic Force Microscope (AFM). The AFM uses a rigid metal tip to track the
surface level of the sample in combination with a laser scattering interpolation
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3.4. Metal Deposition

software programmed by the manufacturer (Bruker). The software contains a
viewing window to analyze the 2D surface image. Scans of 5um x 5um ,10um
x 10um were taken on various areas of the samples. Taking scans 1-5mm from
the center with increments of 1mm along the 0,90,180,270 degree directions of the
grating. Averaging is done on the cross section of the grating along the entire scan
to reduce errors on the grating depth measurements. A Fast Fourier Transform is
automatically performed on the averaged cross section and a manual measurement
is also performed by counting the periods spanned by the scan and using this
integer to divide the horizontal distance measured by the Bruker software.

3.4 Metal Deposition

A Quorum Technologies sputter coater deposited 50nm of gold on the SRG sam-
ples as shown in Fig. 3.3. The thickness of the metal is chosen to be optically
thin but still thick enough to induce a substantial SPR signal. The confirmation
of the thickness of the metallic layer is done by making another scratch through
all layers of the film and measuring the depth using the DEKTAK Profilometer
and finding the difference between the film thickness and the measured metal-azo
thickness.

Figure 3.3: Cross-section of a grating with and without layer of metal (*Note: Thickness
of films not to scale*)
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3.5. Surface Plasmon Spectral and Polarization Sampling Methods

3.5 Surface Plasmon Spectral and Polarization
Sampling Methods

Experiments were conducted on the transmitted and reflected fields of the cir-
cular diffraction gratings, to validate both the presence and polarization of the
SPR.Spectra and Polarization measurements were taken using multiple optical
setups.

3.5.1 Spectroscopy Imaging - Transmission/Reflection

An Incandescent source light contained in a housing unit, Fig. 3.4, is used for a
broad spectrum driving field on the grating. The source output is directed at a
concave mirror and redirected around a large rectangular panel through an ad-
justable circular iris. The iris determines the focused beam size directed onto the
sample. A neutral density filter attenuates the field so that spectroscopic sensor
doesn’t become saturated. The light is focused on the sample and subsequentially
through a final focusing lens into an optical fiber leading to the Ocean Insight
Spectrometer measuring the spectrum and where OceanView software records
the measurements. The Vis-NIR detector operates under specification within a
range of 350-925 nm wavelengths, splitting the light via a broad spectrum grating
and passed onto an air-cooled 1024 x 58 CCD pixel array.

Two methods are used when measuring a reference throughout the various
measurements. When the beam width covers the entire grating surface the ref-
erence used is a flat metal film of equal thickness. A single linear polarization
cannot be used globally over a ’large’ section of the circular grating as is per-
formed with linear gratings Fig. 3.6. If the beam width is taken on a ’small’ area
of the grating where the curvature of the grating is large then a single LP can be
used as the reference orthogonal to the grating vector.

Using a grating-diameter width beam of the source light in Fig. 3.4, the SPR
signal was measured in transmission with varying relative LP angles, where the
sample was rotated on an optical fixture by various angles. This was to emulate
the rotation of polarization while holding the Intensity constant, since the mea-
sured source was elliptically polarized causing a systematic error in the observed
spectra that is otherwise prevented by rotation of the symmetric grating.

3.5.2 Intensity-Polarization SPR Imaging

In characterising EM radiation, the defining observables of the beam include the
Frequency, Intensity, and Polarization. Frequency-Intensity measurements use
gratings combined with calibrated CCD sensors to accurately determine the in-
tensities of a range of frequencies in spectroscopy. The downside is a loss of spatial
information as the spectroscopic measurement is simply taking a global measure-
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Figure 3.4: Spectroscopic experimental setup in transmission - (a) Incandescent source
light,(b) concave mirror, (c) source shield,(d) flat mirror,(e,f,h) variable iris, neutral den-
sity filter, birefringent polarizer, (g,j) lens, (i) sample, (k) optical fiber

Figure 3.5: Spectroscopic experimental setup in reflection - (a,b,d) Variable iris, neutral
density filter, birefringent polarizer (c,g) lens, (e) beam splitter, (f) sample,(i) optical fiber

ment from a focused field.
An industrial use Ueye CMOS camera, in series with a Liquid Crystal Tunable

Filter (LCTF) (THORLABS KURIOS-WL1)in Fig. 3.7, captured images of the
transmission intensities of various gratings over a range of optical frequencies.
The CMOS camera preserves spatial intensity information, important when pre-
serving polarization information. The LCTF is designed to selectively transmit a
narrowband frequency of light from the incandescent source used in the spectro-
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Figure 3.6: Comparison of reference polarizations between linear and circular gratings

Figure 3.7: Cross polarization experimental setup in transmission - (a) Variable iris,
(b,f) lens, (c,e) birefringent polarizer, (d) sample

scopic analysis. As seen in data recorded by THORLABS in Fig. 3.8 the LCTF
has increasing frequency bandwidth and Intensity profiles at different centered
transmission wavelengths.
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Figure 3.8: Thorlabs transmission data of the KURIOS-WB1 Liquid Crystal Tunable
Filter centered on various transmission peaks labelled in the legend.[83]

3.6 Radially Polarized Source and Exciting Surface
Plasmons

A near-lossless Radial Polarization Converter (RPC), used in this experiment,
developed by ARCoptix is capable of transforming a linearly polarized coherent
beam into a continuous radial or azimuthal polarization distribution. Linearly
polarizing a 4mW He-Ne laser and collimating the beam in Fig. 3.9 are necessary
for the RPC,with a secondary linear polarizer on the backside of the radially/az-
imuthally converted beam to analyze the intensity distribution. The RPC has an
Inductor-Capacitor driver to output a variable square amplitude at 1.6 KHz with
polarity inversion, supplying the variable phase retarder for conversion of different
wavelengths[53]. Another output is also used on the LC driver for the Twisted
Nematic (TN) cell to switch between Azimuthal and Radial polarization[53]. As
seen Fig. 3.6 the ’reference’ is identical to an Azimuthal Polarization centered
on the circular grating and the ’normalized’ beam, identical to a Radial Polar-
ization.Using the RPC in combination with a CMOS camera in Fig. 3.9,images
were captured in transmission with both Azimuthal and Radial polarizations on
a circular grating with a SPR signal at the wavelength specified.
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Figure 3.9: Radial polarizer SPR sxcitation experimental setup - (a) He-Ne 632 source
laser, (b) spatial filter, (c) neutral density filter, (c,h) birefringent polarizer, (e) lens, (f)
TN radial polarization converter, (g) sample

Removing the RPC, the intensity profile transmission between cross polarizers
is captured with both the He-Ne setup and with the previously discussed LCTF
setup.

3.6.1 Polarimetry

A PAX1000VIS THORLABS Polarimeter digitally analyzes the polarization of a
source at a singular wavelengths between 400-700 nm. A rotating quarter wave
plate,fixed LP and a photodiode in series. A fast fourier transform (FFT) is
performed on the measured photocurrent measuring the Stokes Vectors and out-
puting the measurements as a point on the Poincare sphere[84].

The Polarimeter was used as a polarization confirmation from the RPC and to
measure the ellipticity of sources.

3.6.2 Diffraction Grating Analysis Software

GSolver, a diffraction grating simulation software, was used in optimizing the
thickness of the metal film and depth of the gratings. The RCWA technique uses
a Fourier expansion of the dielectric function for an interface and calculates the
corresponding fields with respect to the boundary conditions. The construction of
a single period of the grating is made through a graphical software interface. The
software has data for the dielectric permittivity for Gold, and a constant value
for the azo-film dielectric function is used.
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GSolver simulates incident fields with any polarization on the Poincaré sphere
over a range of frequencies, and a normalized transmission TE/TM graph is sim-
ulated for various pitches.
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4 Results and Discussion

The experimental results recorded in this chapter were by means of the methods
outlined in Chapter 3. The goal was to produce and identify an SPR excitation
via unpolarized light on a large aperture circular diffraction grating. The po-
larization dependent SPR excitation corresponds to a polarized SPR mode with
intensity enhancement or absorption in transmission and reflection respectively,
as understood by the theory outlined in Chapter 2.

The thickness of the azo-films were measured at approximately 300±20nm in
depth. The pitch and depth of the grating are independent parameters of the SRG,
the prior modulated by the nominal angle of the CDG, and the latter optimized
with the laser irradiance value and duration of inscription. Manufacturing of the
CDG’s requires precision milling and polishing with fixed angles. The choice of
pitch is limited to the wavelength of the inscription sources and the choice of CDG
in Table 3.1. Using the measured nominal angles of each CDG, the expected pitch
of the inscribed SRGs with various inscription wavelengths were calculated using
Eq. 2.1.60. Scans with area 10x10µm ranging from 2500-5000 µm from the center
were used to measure the pitch of the SRGs. The averages across all scans are
presented in Table 4.1 presented with the theoretical values for the corresponding
CDG nominal angle, where the theoretical values are obtained using Eq. 2.1.60.

Inscription Wavelength (nm)
488 514 532

CDG
Angle

(Degrees) Theo. Exp. Theo. Exp. Theo. Exp.

16.25 570 583 600 598 622 623

16.51 589 581 621 617 642 668

18.61 657 692 716 717

Table 4.1: Experimental vs.Theoretical Values of constant pitch inscription for
differing CDG angles and varying inscription wavelengths

The theory outlining the coupling of SPs in Chapter 2 assumes a constant
grating vector magnitude with symmetry along a single dimension on the grating
surface. For non-linear gratings, specifically in the case of circular gratings, the
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grating vector has a 2D spacial dependency as seen in Eq. 2.3.20. Moreover, a
constant pitched CG has a constant GV magnitude with circular symmetry, such
that the vector field associated with the GV has a source point centered on the
axis of symmetry. Exciting SPs locally on a CG, where the curvature of the
grating is small relative to the pitch, the grating vector can be approximated as
linear with small incident beam widths. The approximation was used throughout
the preceeding theory, and will be assumed throughout the following discussion.

4.1 Surface Fabrication and Characterization

In previous literature, inscribing the SRGs using an azobenzene film involves a
Lloyd mirror setup seen in Fig. 4.1.

Figure 4.1: A diagram showing the geometry of a Lloyd mirror with an incident inscrip-
tion beam.

In the Lloyd mirror setup under a collimated beam of constant irradiance, a
unit area of reflection has a constant interference area on the film irrespective of
the location on the reflective surface. In other words the intensity profile on the
film, under constant irradiance conditions, will be constant on the inscription area.
In contrast, the geometry of a CDG does not have this property as illustrated in
Fig. 4.2
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Figure 4.2: A diagram showing the geometry of a CDG with an incident inscription
beam.

A ring with radius larger than the small aperture of the CDG reflects to a ring
of smaller radius at the film’s surface. Under geometric conditions imposed by
the width of the incident beam, the reflection at the beam edge is focused at the
center, where the beam width is adjusted for full circular gratings. The proximity
of the reflected rings to the small aperture of the CDG corresponds to the level of
focusing of the ring. That is to say under the assumption of an incident beam with
constant irradiance, the presence of complete destructive interference occurs only
at the boundary of the small aperture. This is relevant since the photoreactive
response of the azopolymer is dependent on both the polarization and intensity
profile in the film. With this in mind, it is expected that the growth rate of the
SRG inscribed on a CDG will vary depending on the distance from the center of
the CDG.

As seen in Fig. 4.3, the depth of the circular gratings along rays extending
out from the center were found to have an increasing depth from the center out
towards the edge of the grating. This can be explained by the focal geometry of the
CDG apparatus. Moreover, it is understood that the CDGs are not ideal conical
surfaces, and defects with size appreciable to the wavelength of the inscription
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beam (λi) will perturb the reflection and in turn create unexpected inteference on
the film. Since the creation of SRGs via azopolymer films is not fully understood,
the underlying depth variability observed could also be of unknown large scale
processes. Consider a system of rings for the grating inscription as seen in Fig. 4.2.
A focused reflected ring slice with angle dθ, has an infitesimal area rrefdrdθ,
razodrdθ for the reflected ring and film ring respectively, where rref ,razo is the
radius of the reflected ring and interference ring of the corresponding reflected
ring on the azo film. Since rref > razo, it is clear that an integration over the
rings will produce a larger irradiance for the reflected ring (Iref > Iazo). This
discrepancy in the Irradiance theoretically reduces to zero as the radius’ converge
to the limit at the edge of the small aperture.

Figure 4.3: Depth of grating across rays of circular gratings

Figure 4.4 shows an example of surface scans and some single cross sections
to illustrate the depth-radius positive correlation along a single ray. A closer look
at the scans, it is clear that the structure becomes less uniform near the edge of
the grating, where the rings as proposed should interfer with most nullification
of the field. This is due to edge effects from manufacturing of the CDG and the
scattering from small defects.
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(i) (ii) 

(iii) (iv) 

(v) (vi) 

Figure 4.4: Sequence of AFM surface scans (10µmx10µm) of a CG inscribed with
514nm wavelength laser light. The scans were taken along a single ray with inscreasing
distances from the center: (i)2500µm, (ii)3000µm, (iii)3500µm, (iv)4000µm, (v) 4500µm,
(vi)5000µm. Note: All graphs share common colour and axis scales
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4.1.1 Circular SRG Center Profile

The CGs fabricated in this project used a beam width, adjusted in size for inscrip-
tion to the center of the CDG. It is important not to use a beam width greater
than this as to avoid unexpected interference across the center of the grating cen-
ter. All inscriptions caused the following effect on the film as seen in Fig. 4.5.
These ray formations could be occuring, via unexpected reflections from the sur-
face of the mirror. The surface near the center has topological features that are
larger than the AFM can measure, in the order of 1µm. This is particularly ex-
ceptional since the thickness of the pre-irradiated film was roughly 300 nm thick.
This implies that the azoglass is congregating near the center of the inscribed
grating with around 3 times the thickness of the original film. The dominant
topological features less than 1mm from the center are the structures observed
in Fig. 4.5 with no discernable SRG formation. Surface profilometer scans were
taken in Fig.’s 4.6, showing a significant ‘mountain’ of azo at the center of the
inscribed area. Figure 4.7 shows another profilometer scan in which a newly spin-
coated and dried azo film was scratched and scanned to confirm the thickness of
the azo-film; showing the thickness to be around 300 nm.

The mountain deformation could be from some diffraction effects from the
iris used to control the beam width, in which case there would be unexpected
reflections directed at the center of the fixture. The focus of the beam at the
center has the largest irradiance interference gradient and any imperfections of
the CDG surface would cause the inscription of unexpected features on the azo
surface, also supressing the formation of regular gratings. These center features
of the fabrication process will be discussed later in terms of suppressing SPR
excitation.

The irradiated azo-film congregates a bulk of the glass molecules, moving
significant mass into localized areas of the film. Specifically, the focal center of
the CDG centered on the small radius, is a point (area; although quite small)
in which a caustic is formed. In other words the center when irradiated with a
normal beam of sufficent radius is a ray singularity. The field dynamics is choatic
and any sort intensity analysis will have some asymptotic feautures; in which the
azo-film is experiencing under irradiation.
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Figure 4.5: Picture of the surface of an azo-film CG using the camera on the AFM,
where the center of the configuration is deformed after inscription.
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Figure 4.6: Surface profile of the center of a circular grating inscribed by a CDG. The
measurement was made using a DEKTAK Profilometer.

Figure 4.7: Surface profile of a ∼300 nm thick azo-film with a scratch mark in the center.
The measurement was made using a DEKTAK Profilometer and before inscription with
the CDG.
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4.2 SPR Excitation

As seen in Eq. 2.3.18, the excitation of an SPR mode, on a linear grating with
a sufficiently ‘flat’ surface, is dependent on the real components of the relative
permittivity of both media constituting the surface, the pitch of the grating, and
the angle of incidence with respect to the normal of the surface.

The relative permittivity of air will be set to εr,d = 1 for all frequencies,
and the relative permittivity of gold is obtained from measurements of a thin
film (Yakubovsky et al. 2017: 50-nm film). The permittivity of gold varies
over the frequency domain and thus over the corresponding wavelengths. Ac-
cording to the data set measured by Yakubovsky et al., the relative component
of the permittivity at 500nm and 900nm are ε′r,m(λ = 500nm)= −2.8159 and
ε′r,m(λ = 900nm)= −36.162 respectively. When calculating the expected reso-
nance wavelength using Eq. 2.3.18, the relative permittivity of the gold film will
be set to a constant measured value, ε′r,m(λ = 632nm)= −12.797. The expected
SPR wavelength at normal incidence (θi = 0), is given by the linear relationship
with respect to the pitch of the grating:

λSP = 1.04Λ (4.2.1)

Table 4.2 shows the expected theoretical maximum of the SPR signal using
Eq 4.2.1.

CDG
Angle

(Degrees)

Measured Pitch with
532 nm inscription
wavelength (nm)

Theoretical SPR
Wavelength (nm)

29.4 623 648

27.9 668 694

24.0 717 746

Table 4.2: Theoretical values of the SPR signal of varying pitched linear gratings
inscribed with a 532 nm source and ε′r,m = −12.797

The CGs have a large aperture (≈ 1cm) such that the curvature of the gratings
over the majority of the grating should produce an SPR signal approximately at
the linear grating prediction in Table 4.2. Using the transmission spectroscopy
setup described in Chapter 3, a series of normalized measurements are graphed for
each CG. It is important to note, that for any broad spectrum incident beam that
covers the entire grating surface, a divergent beam is used, such that the incidence
angle is only going to be equivalent to zero along the optical axis. Specifically, the
surface plasmon wavelength is dependent with regard to the radius of excitation
and the distance from the focalized beam as visualized in Fig. 4.8
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Figure 4.8: Diagram showing the physical setup of the fully irradiated grating. Note
the grating surface is not a true depiction of a cross section of a circular grating

4.2.1 SPR Excitation via Linear Polarization on Circular
Gratings

When exciting an SP mode on the surface of a metallic grating, a component of
the polarization needs to be in the direction of grating vector. It is not necessary
that the electric field oscillates solely in the direction of the grating vector but
that there is a non-zero projection onto the grating vector. Fig. 4.9 shows a
representation of the orientation of the beam, and its polarization on the CG
when observing the transmission signal. The labels describe the positioning of
the source beam (red) and the projection of the electric field with respect to the
grating vector at the center of the beam. Consider the orientations shown in
Fig. 4.9, it is hypothesized that the centered beam would produce a transmission
SPR signal greater in intensity than the off-center orientations. When centered
the source beam is covering the entirety of the grating surface and should couple
to the SP mode where the grating vector is parallel (or has a component parallel)
to the polarization. Specifically, by the geometry of a circle, there should only be
two rays from the center of the CG (in this case, the horizontal rays) which do not
couple to the SP mode. During the experiment, the normalization process was
performed only once when measuring the transmission spectra of all concerned
orientations in Fig. 4.9, therefore the average intensity of the source light is static
and the variations in the measured signal come from the interactions of the SPR
into the far-field transmision measurements. However, an unexpected observation
was found in the transmission spectra of the CGs graphed in Fig.’s 4.10 - 4.12.

The observed transmission spectra and the peaks of each in Fig.’s 4.10 - 4.12
coincide with the theoretical SPR wavelength, providing confidence that the inten-

57



4.2. SPR Excitation

Centered (C) Off-Center Orthogonal
(OC_Ortho)

Off-Center Parallel
(OC_Para)

Figure 4.9: Diagram showing physical setup and nomenclature of the linearly polarized

sity enhancement observed is a result of an SPR excitation. When using a linearly
polarized beam on the CGs, it is seen that the greatest intensity of the SPR signal
occurs when the beam is off-center parallel. As was discussed in Chapter 2, the
electric field’s component parallel to the GV excites an SPR signal, and therefore
in an ideal setting the total intensity enhancement should be proportional to the
projection of the electric field onto the grating vector. It is expected that the
off-center parallel spectrum would have a larger transmission peak at the SPR
wavelength than the off-center orthogonal spectrum’s transmission peak, since
the sum of the total projection of the electric field onto the GV is greater in the
off-center parallel orientation. Under this hypothesis the centered beam over the
CG would produce an even larger transmission peak, since the exposed grating
vector with a component parallel to the electric field is larger. However this is
contrary to what is observed in Figures 4.10- 4.12. We expect to have around
twice the transmission intensity enhancement on the centered beam as in the off-
center parallel beam, as there is roughly twice the coverage of the pump beam
for the centered geometry. The observed peak transmission signals of the beam
placements are seen in Table 4.3.
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Figure 4.10: Normalized transmission spectra of a CG (Λ = 717nm) with varying LP
beam orientations
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Figure 4.11: Normalized transmission spectra of a CG (Λ = 668nm) with varying LP
beam orientations
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Figure 4.12: Normalized transmission spectra of a CG (Λ = 623nm) with varying LP
beam orientations

CDG Angle
(Degrees)

Normalized Peak
Enhancement (%):

OC Ortho

Normalized Peak
Enhancement (%):

OC Para

Normalized Peak
Enhancement (%):

Center

Center/OC Para
Ratio

16.25 126.18 430.76 176.65 0.41
16.51 126.47 635.89 297.55 0.47
18.61 117.47 382.24 159.21 0.42

Table 4.3: Table of the normalized peak values at the SPR wavelength and the
ratio of the transmittive enhancement across differing CDGs.

The ratio (Center/OC Para) in Table 4.3 shows a consistent relationship be-
tween the two coverages and their corresponding SPR transmission peak. The
centered coverage is seen to transmit the SPR signal at roughly 40% of the effi-
ciency as the off center parallel coverage. This can be explained by a couple of
features related to the geometry and surface irregularities of the surface. The SPR
excited on a diffraction grating has two propagative modes, forward and back-
ward via the corresponding diffraction orders shown in Eq. 2.3.18. The mountain
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structure at the center of the CG, could be causing some destructive interference
between the propagative modes. The SPR mode propagates along the surface on
the order of micrometers from the area of irradiance from the pump beam. This
discredits the idea that there is some destructive intereference happening with the
SPR mode directly since the mountain features size is in the order of milimeters.
Potentially within the far field radiation the SPR field is destructively interfering
and supressing the transmission spectrum. This could be studied further by irra-
diating the CG with a ring beam instead of a full disk. This would preclude the
irradiation of the irregular mountain surface at the center of the grating. SPR
transmission spectra could also be studied on smaller sections of the CG so as to
find some average over the entire CG. The CGs could also be fabricated as ring
SRGs by changing the width of the inscription beam, preventing the large irreg-
ularity of the surface towards the center to compare the peak SPR transmission
enhancement over the varying positionings of the pump beam.

The set of contour graphs in Figures 4.13- 4.15 show the transmission spectra
of the CGs with varying angles of a linearly polarized centered beam at normal in-
cidence. The in-plane axes of the graph are the transmission wavelength spectrum
and polarization angle of the incident beam, where the contour axis represents the
normalized intensity of the beam. The contour graphs show a generally unshifting
SPR peak at the expected wavelength corresponding to the measured pitch.
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Figure 4.13: Normalized transmission intensity contour graph of a CG with Λ = 623nm
at varying linear polarization angles
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Figure 4.14: Normalized transmission intensity contour graph of a CG with Λ = 668nm
at varying linear polarization angles
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Figure 4.15: Normalized transmission intensity contour graph of a CG with Λ = 717nm
at varying linear polarization angles

The spectroscopic measurements were taken with a fixed birefringent linear
polarizer and a single reference measured prior to the captured SPR measure-
ments. As discussed in Chapter 3, the intensity of the linearly polarized light
from the source was variable with respect to the polarization angle, thus a refer-
ence for each angle of polarization would be necessary to have a set of normalized
spectra to compare between each measurement. The rotation of the CG itself
emulates the rotation of the linear polarizer while preventing a calibration of the
reference spectra for each individual angle of polarization. The drawback of this
method is seen in Figures 4.13-4.15, where the contour heat maps have sharp
discontinuities or ‘cut’ features in the horizontal direction.

For each measurement the CG was repositioned so the peak normalized inten-
sity remained constant while remaining positioned near the center of the source
beam. As seen in Table 4.3, the centered linearly polarized beam has a peak
SPR signal with only 40 percent of the intensity enhancement as the off-centered
parallel beam. Since the transmission spectrum intensity varies extraordinarily
between the two edge cases (off-centered,off-center parallel), and shifts continously
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between these two positionings, any shift in the plane induces a continuous shift of
the spectrum between any two positions. The contour spectra illustrate the sen-
sitivity of the SPR intensity with regard to the position of the linearly polarized
beam on a CG, creating the horizontal ‘cut’ artifacts in Figures 4.13-4.15.

4.2.2 SPR Excitation via Unpolarized Light on Circular
Gratings

The CGs were illuminated with unpolarized light from the source nearly identical
to the setup seen in Fig. 3.4 with the removal of the linear polarizer preceeding
the sample. The SPR signals observed from the three CGs are shown in Fig. 4.16
with peak wavelengths seen in Table 4.4

Figure 4.16: Normalized transmision spectra of varying CGs with incident unpolarized
light
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CDG Angle
(Degrees)

Expected SPR
Wavelength (nm)

Measured SPR
Wavelength (nm)

29.4 648 660

27.9 694 675

24.0 746 738

Table 4.4: Table of the expected SPR peak vs. the measured SPR

The measured values of the SPR peak seen in Table 4.4 correlates fairly well
with the expected SPR peak but does not align with great precision. This dis-
crepency can be accounted for by the CG themselves perturbing the SPR signal.
The theoretical resonance wavelength is given for a 1-Dimensional (1D) linear
grating where the CGs by their nature are 2-Dimensional(2D). However if this
were entirely the case, the shift in the measured SPR signal with respect to the
expected one would be consistently greater or lower, which is not the case as seen
in Table 4.4. The expected SPR wavelength was calculated using Eq 4.2.1 and
the measured pitch values in Table 4.1.

The CG inscribed using the nominal angle CDG of 16.51 has an SPR signal
peak that is significantly blue-shifted from the expected value given the measured
pitch. This could be caused by an experimental uncertainty in the measurments
of the pitch, since the theoretical pitch values in Table 3.1 are lower by ≈ 20nm
than the measured values.

4.2.3 Crossed Polarizer CG Transmission Profile with He-Ne
Laser

In Chapter 2, the theoretical transmission profile of a CG at the SP wavelength
was derived in Eq. 2.3.36. The surface of Eq. 2.3.36 is graphed using an open-
sourced python library, with the code in the appendices.

Eq. 2.3.36 is general enough to express the intensity profile with varying solid
angles between polarizers given by θ. When θ = 0o, the polarizers preceeding
and suceeding the CG are both vertical, increasing to a full cross polarization at
θ = 90o. In Fig. 4.17 the spatial profile of Eq. 2.3.36 is plotted for θ : 90−0o with
decreasing 10o increments. When the polarizers are crossed the intensity profile
has four lines of symmetry (vertical,horizontal, +45o,−45o) creating four equally
intense ‘lobes’ emanating from the center of the plane. As the back polarizer is
rotated, decreasing the solid angle between the polarizers, the axes of symmetries
decrease to two and lie along the rays which the lobes are centered on. In the
case where θ = 0o, there is simply 1 ‘lobe’ in each half-plane as can be expected
as the back polarizer is simply acting as an analyzer of the SPR transmission.

The profile between these two limiting cases (θ = (0o, 90o)) have a primary
and secondary ray maximums in the half-plane that are rotated away from the
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45o by an angle of 45 − θ/2. For example, when the back polarizer is rotated at
an angle of θ = 20o the primary and secondary maximum rays occur 35o away
from the diagonal rays(±45o).
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(a) Plots for varying θ:(i) 90o, (ii) 80o, (iii) 70o, (iv) 60o, (v) 50o, (vi) 40o

Figure 4.17: (a) Simulated spatial intensity plots of a two polarizer SPR transmission
optical system describe by Eq. 2.3.36
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(b) Plots for varying θ:(vii) 30o, (viii) 20o, (ix) 10o, (x) 0o

Figure 4.17: (b) Spatial intensity plots of a two polarizer SPR transmission optical
system describe by Eq. 2.3.36

There is a secondary maximum in all of the intermediate polarizer solid angles
(θ = (10o − 80o)), however it becomes suppressed as the solid angle becomes
smaller, and the contrast of the graphs do not display the location. The secondary
maximum is extinguished as the polarizers align since the SPR signal produced
around the CG in the orthogonal direction is filtered out.

Using the setup seen in Fig. 3.7 with a He-Ne laser source in replacement
of the tunable light filter, photos of the transmission of the collimated beam at
varying solid angles between the linear polarizers are seen in Fig. 4.18. The small
diagrams in the bottom left corner of each image depicts the relative angles of
each polarizer as two-sided arrows with the CG sitting in between seen as the
gold circle. The red arrow represents the rotating back polarizer, the analyzer of
the system.
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(a) Images with varying solid angles (θ) between the polarizers:(i) 90o, (ii) 80o, (iii) 70o,
(iv) 60o, (v) 50o, (vi) 40o

Figure 4.18: (a) Transmission images of a 623nm pitch CG with 631.8nm beam incident
beam. Bottom left diagrams: Front Polarizer (Black Arrow), Grating Surface (Gold
Cirlce), Back Polarizer (Red Arrow)
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(b) (b) Images with varying solid angles (θ) between the polarizers:(vii) 30o, (viii) 20o,
(ix) 10o, (x) 0o

Figure 4.18: Transmission images of a 623nm pitch CG with 631.8nm beam incident
beam. Bottom left diagrams: Front Polarizer (Black Arrow), Grating Surface (Gold
Cirlce), Back Polarizer (Red Arrow)

Comparing the images in Fig. 4.18 to the theoretical profiles in Fig. 4.17, the
crossed polarizer enivronment experimentally reveals the symmetric four ‘lobed’
clover as hypothesized. In Fig. 4.18a the four symmetries are broken and the lobes
in the second and fourth quadrant start to rotate towards the vertical line while
becoming increasingly more intense compared to the adjacent lobes. A divergence
occurs in Fig. 4.18b from the hypothesized profiles, where the ‘cone’ in Fig. 4.17 is
only partially visible in the experimental images without any additional analysis.
The increased intensity in Fig. 4.18b relative to the dark regions in theory is due
to the non-coupling component of the transmission field that was neglected in
Eq. 2.3.23. Since the bias and black-out levels of the camera were fixed across
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all images, the transmission fields of the non-coupling component are transmitted
through the back polarizer as the angle coincides with the front polarizer angle.
To mitigate the unwanted transmission modes, the sensor settings of the camera
can be altered revealing the SPR profile. This can be as simple as decreasing the
bias and increasing blackout level.

Taking a cross section of the first image (TE-TM) in Fig. 4.18a reveals the
structure of the profile visible to the camera. The horizontal cross section is chosen
as a fraction of the distance away from center, such that the center is chosen as
zero and the top and bottom edges are considered as x = ±1 respectively. Since
there are 576 pixels vertically on the camera, the center pixels are 288 and 289.
Determining the cross section to sample, the corresponding scaling value (a) of the
images, similarly as in Eq. 2.3.26, were labelled by a pixel distance away from the
‘middle’ row of the sensor. In Fig. 4.19 the signal is noisy as a result of the high
bias settings enabled on the camera. To smooth the signal a 10-step Gaussian
kernal was used and a convolution was performed on the data in Fig. 4.19 and
plotted in Fig. 4.20.
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Figure 4.19: Black - Horizontal cross section of the raw data in Fig. 4.18a (i); Red -
Theoretical cross section of a profile describe by Eq. 2.3.25 with the constant parame-
ter a = 0.5 – x-axis scaled by the number of pixels horizontally, y-axis normalized by
255(Maximum possible pixel value recorded digitally)

As seen in Fig. 4.20, the theoretical line in red is a reasonable approximation
to the observed transmission spectrum. The largest deviations occur on the tails
of the curve near x = ±1. The equations of the theoretical cross section do not
take the boundary of a CG into account. Therefore the tails extend on as if the
grating were infinite in all directions where the image tails off to zero, where the
grating ends.
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Figure 4.20: 10-step Gaussian convolution of the raw data in Fig. 4.19

4.2.4 Crossed Polarizer CG Transmission Profile with Tunable
Light Filter

The Intensity profile of the CG in transmission within the cross polarizer envi-
ronement under a coherent source revealed the polarization of the excited SPR
field through the CG. The polarization of the SPR field inferred with the intensity
measurement under cross polarization, is a linearly polarized field with a locally
dependent intensity profile.

Under theoretical conditions an excited SPR field has a monochromatic cou-
pling wavelength for each grating pitch. In practice, the dampening of the metal
and depth of the gratings broadens the resonance peak. The polarization conver-
sion of the incident field is induced by the SP coupling, therefore the intensity of
the profile under cross polarization should correspond to the SPR transmission
spectrum. The tunable light filter alters the source’s wavelength on the CG. Us-
ing the setup in Fig. 3.7, the CMOS camera was used to image the transmission
profiles of a CG over a range of wavelengths using the tunable light filter as the
source. A sequence of images in Fig. 4.23 show the absence of the ‘clover’ pro-
file with the bandwidth centered at 570 nanometers. When the bandwidth peak
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wavelength was increased, the profile seen under the He-Ne Laser appeared and
then faded as the tunable filter reached its functional limit at 730 nanometers.
The profile remained as the peak wavelength increased past the resonance peak
that was observed by the spectrometer in Table 4.2. The detection of the profile
comes from the lorentzian SPR signal seen with spectroscopic measurements, as
well as from the broadening and intensifying of the tunable wavelength bandpass
as seen in Fig. 3.8.
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Figure 4.21: Cross sections of images in Fig. 4.23 at pixel row 318 from the top. Where
the cross sections are labelled from the spectrum maximum using the tunable filter.

As seen in Fig. 4.21, a cross section of the ‘clover’ reaches a maximum trans-
mission between 670-690 nanometers. Cross sections of the images were taken
along a single row of pixels, convoluted with a 5-step Gaussian Kernel, and plot-
ted in Fig. 4.21. The peaks in Fig. 4.21 are asymmetric across the center. The
asymmetry is likely caused by an off center grating, a deviation of the cross po-
larizers away from a 90 degree solid angle, or an asymmetrical grating structure
during inscription.

The focused source isn’t symmetric enough to conclude with certainty the un-
derlying reason for the asymmetry across the cross sections. As seen in Fig. 4.23,
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there is a circular region of higher intensity throughout the images. This circular
region of high intensity is a result of the optical setup used coincidently with the
LCD tunable filter. The polychromatic light was focused with an attempt at col-
limation using a lens in front of the CG resulting in two beam widths of differing
intensities. The transmitted light was passed through a diverging lens again to
expand the beam width on the camera sensor. This data is therefore not reliable
to compare the intensities across the surface, but is useful to analyze intensities
over the varying bandpass spectra in Fig. 4.23.
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Figure 4.22: Normalized pixel intensity on a pixel corresponding to each max peak with
varying bandpass spectrum peaks.
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(a) Increasing peak transmission wavelength from top-down, and left-right.

Figure 4.23: (a) Transmission images of a 623nm pitch CG with varying spectrum
wavelength peaks and bandwidths. Wavelength peaks denoted in the bottom left of each
image

78



4.2. SPR Excitation

(b) Increasing peak transmission wavelength from top-down, and left-right.

Figure 4.23: (b) Transmission images of a 623nm pitch CG with varying spectrum
wavelength peaks and bandwidths. Wavelength peaks denoted in the bottom left of each
image

A reference pixel was chosen from each peak of the cross section (left/right) as
seen in Fig. 4.21, and was picked by using the highest intensity pixel across all cross
sections. The intensity of the reference pixel was plotted for all cross sections vs.
the bandpass peak of the incident spectrum as seen in Fig. 4.22. The transmission
intensities of the chosen cross sections for each peak (left/right) reached maximum
at different wavelengths 670nm/650nm respectively. The scatter plot in Fig. 4.22
shows a resonant behaviour peaking in between 650-670nm, within the range of
the SPR peak for a 623 nm pitch grating as seen in Table 4.2.
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4.2.5 Circular/Elliptical Polarized Source on Circular Grating

The CG was irradiated with ‘almost’ circularly polarized light using a quarter-
wave plate and a He-Ne source, where the polarimeter was used to verify the
polarization of the output beam through the quarter-wave plate. The phase space
between the limits of linear polarization and circular polarizations, lie the space
of elliptically polarized plane waves. The polarizations of a transverse plane wave
have unique momentum and energy states up to a rotation in the plane. When
considering time-averaging processes all plane wave polarizations are considered as
instaneously linearly polarized, where the direction of linear polarization rotates
in the plane for the elliptic and circular polarized cases.

An SPR excitation on a grating is polarization dependent along the direction
of the grating vector. Therefore when a circular polarized EM field is incident on
a CG, the SP mode is maximally and minimally coupled when the electric field
is parallel and orthognal to the grating vector respectively. The period-averaged
SPR excitation is equivalent on all rays of the CG and therefore the intensity
of the transmitted SPR intensity should be equivalent when averaged over one
or more cycles. When the SPR is induced via linear polarization the SPR mode
radiates linearly polarized light in the direction of the grating vector. A CG
illuminated by a circularly polarized plane wave will induce an SPR field with
radial polarization by the geometry of the grating vectors. The period-averaged
intensity of a collimated beam is constant, therefore the SPR intensity induced
on every ray is equivalent and the radially polarized SPR field is flat.

If we assume the transmitted SPR field dominates the non-coupled transmitted
field, the introduction of a linear polarizer into on the back-side of the CG with an
incident circularly polarized field will produce an intensity profile seen in Fig. 2.8.
As seen in Fig. 2.8, the SPR cone axis coincides with the direction of the linear
polarizer. The images in 4.24 show an intensity profile similar to that seen in
Fig. 2.8, up to a rotation of the analyzing linear polarizer. The cause of this
rotational discrepency in the spatial profile could be caused by a sensitvity to the
polarization induced by the quarter wave plate. The polarization of the incident
field was measured using the polarimeter and found to be right hand elliptically
polarized with significant eccentricity away from perfectly right handed circular
polarized (RHCP) (χ = 45◦) as can be seen in Table 4.5, being nearly circular.
More about the polarimeter and the math behind it in the Appendices. Any
eccentricity away from ±45◦ breaks the symmetry of the fields both incident and
transmitted, thus the CG is sensitive to the eccentricity parameter using the SPR
field intensity.
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4.2. SPR Excitation

Figure 4.24: Transmitted profile of ‘circularly’ polarized light with back linear polarizer
filter at varying angles: (i) TM, (ii) 45o, (iii) TE, (iv) 135o, (v) TM; Transmitted profile
of circularly polarized light with no back polarizer (vi) Reference image of the trasmitted
field without the linear polarizer analyzer
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4.2. SPR Excitation

Polarimeter Measurements
S0 S1 S2 S3 ψ (Azimuth) χ (Ellipticity) φ (Phase Shift)

RHCP 2.526 -0.253 0.256 2.503 67.3±0.1◦ 40.9±0.1◦ 84.16±0.01◦

Normalized Stokes Comp. (±0.0001)
1 -0.1000 0.1013 0.9911

Table 4.5: The Stokes vector components of the incident ‘RHCP’ beam on the
circular grating as seen in Fig. 4.24

This relationship can be observed directly when the polarization ellipse that
the polarimeter measured is laid over top of one of the images from Fig. 4.24,
as seen in Fig. 4.25. The largest expected intensity response from the plasmonic
cone, if the polarization is completely circular, would be along the vertical ray.
The oblique ellipticity causes a rotated plasmonic cone with respect to the ideal
circular polarized case and the linear polarizer angle in Fig. 4.24

Figure 4.25: Figure showing the intensity relationship of the transmitted beam signal
through a circular grating and the incident polarization; (a) Normalized polarization el-
lipse generated from the polarimeter measurements in Table 4.5 (b)Scaled ellipse overlaid
on a transmission image with a vertical linear polarizer analyzer

It’s important to note the polarization conversion of the incident field into the
SPR field imparts an orbital angular momentum (OAM) with a helical phase front.
This phase front conversion of the SPR field would interfere with the non-coupled
transmitted field, potentially effecting the transmitted intensity profile.
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4.2. SPR Excitation

4.2.6 Excitation of SPR on Circular Grating using collimated
Laguerre-Gaussian Modes

A He-Ne LASER was collimated and centered on the RPC. The centering is
important because of the radial symmetry in the twisted nematic cell that converts
the linear polarization of the incident light into an axially symmetric polarized
beam. Centering the RPC’s transmitted beam on the CG, the azimuthal and
radial transmission were imaged as seen in Fig. 4.26.

Figure 4.26: Top Left/Right: Transmission of Azimuthally/Radially Polarized LG
mode. Bottom Left: Pixel subtraction of the radial image by the azimuthal image. Bot-
tom Right: Count of pixels at each registered intensity of the radial/azimuthal images
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4.2. SPR Excitation

As seen in Fig. 3.6, an azimuthally polarized beam can be used as the reference
for an SPR image on a CG, similar to a TM/TE reference on a linear grating.
The transmission images with both azimuthal and radial polarizations were used
to generate a new image by pixel-to-pixel subtraction (radial-azimuthal).

In Fig. 4.3 the CGs were measured to have increasing depth from the center
out to the edge, corresponding to the increased SPR transmission seen in Fig. 4.26
(bottom-left). As discussed in Chapter 2, the diffraction of the field induces the
coupling of the SP mode to the incident EM field. The grating depth, as long
as not too deep (> 70nm), positively correlates with the SPR field intensity via
the diffraction efficiency. Since the grating depth increases from the center out,
the SPR intensity enhancement is expected to be greatest near the edges of the
grating.
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5 Conclusion

In conclusion, azobenzene lithography has been shown to inscribe large-aperture
circular gratings for use in optical plasmonic research. Specifically the following
results have presented the feasibility of tuning the SPR wavelength (λSPR) by a
change in the inscribed pitch of the circular gratings; via a change in the nominal
angle of the conical mirror, or CDG (θCDG). The ‘Introductory SPR Theory’,
using a 1D ’flat‘ surface,has been shown to predict SPR wavelength to a reasonable
degree, admittedly with questionable precision. In practice the perturbations of
the flat interface model, from large amplitude gratings, create energy bandgaps
in the dispersion curve leading to a splitting of the resonance frequency as seen
in some of the orientations of the circular grating.

Furthermore, ‘Full’ Circular Gratings were inscribed using in-house polished
conical metal mirrors, where circularly polarized light interferd at a plane on a
‘circular’ conic with a smaller area. This focusing in the inscribing plane results
in a growth-rate curve of the SRGs over an extended exposure. Specifically, the
focusing near the center of the axis of the inscription plane causes ray surface
deformations that extends in the order of millimeters out from the center, with
a center mountain deformation, an order of magnitude higher than the thickness
of the AZO glass film. These surface deformations are hypothesized to be formed
by caustics on the interference plane; areas of dense ray packing. This chaotic
‘intensity-polarization’ field possesses an irregular gradient profile, in which scat-
tering effects dramatically alter the interference pattern on the film, therefore
generating an unexpected crimpling of the surface, and supressing SRG forma-
tion. AFM scans verified that the grating uniformity and amplitude increased as
the curvature decreased due to the reduced area contraction in those regions of
interference; more work should be done attempting to inscribe more unifrom grat-
ings with larger curvature. Commercial products such as convex conical mirrors
have been made using a glass substrate with a metal coating; similar to axicons.
Potentially, CDG’s could be made by polishing a concave conical surface into a
glass cylinder and depositing a metal film onto the reflecting surface. Ultimately
it may be just more practical to use axicons for large curvature inscriptions.

The SPR response of the circular gratings have unique transmission proper-
ties under varying plane-wave polarizations. The transmission spectrum for each
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circular grating had a peculiar quality under linear polarization; where the SPR
response increased under half illumination vs. full-illumination. More specifically,
a circular grating illuminated with a linearly polarized broad spectrum optical
beam had the largest SPR peak maximum transmittance when the grating was
‘half-illuminated’ along the axis of polarization; a minimum when centered over
the axis of the circular grating. This is thought to be from a suppression of the
surface plasmon at normal incidence from the irregular nature of the center of the
gratings, exciting a split plasmon at a greater radius but at an angle in which two
counter propagating surface plasmons are excited. Another more suspect reason
comes from a waveguiding effect from the circular grating itself combined with the
varying depth profile with respect to the radius. This future work can be readily
measured by simply taking measurements of the beam intensity across the beam
width and analyzing with respect to the SPR response maximum across, local
areas along the grating ray; measurements have verified the increased intensity
in the SPR reponse, along an arbitrary ray (center→edge). A more statistical
image of the grating can be achieved with greater resolution with more sampling
to verify SPR response more precisely at varying angles of incidence. Lastly in
relationship to the beam positioning, if it’s the case the beam has a negligible flux
variance then the anomalous intensity behaviour could be attributed simply an
artifact from the diverging beam, or a waveguiding effect from the curvature of
the grating itself.

The circular gratings’ transmission spectrums were measured under largely
unpolarized light and found to have a strong SPR response with peaks dependent
on the grating pitch. The large aperture gratings show a proof of concept for
measuring an intensity profile of an SPR transmission intensity; and measured a
sharp intensity profile under various optical setups and even under convolution,
where the grating acts as a wavelength dependent filter. Specifically, it was shown
that the intensity profile of the SPR mode on a circular grating can be modelled
with a linear approximation; involving the evanescent non-coupling component
with the coupling component of the SP mode; the approximation was uniquely
fit as a linear transformation by exploiting the symmetries involved with the
projections and approimations of the supression of the non-coupling component.
The regard for a time-averaged non-degenerate general elliptical electric field, the
projections of polarization with regard to a single stationary grating vector was
not discussed. It is assumed that any ellipticity on the grating will excite a SP
mode with an angular dependent intensity profile and have shown some sensitvity
with regard to this experimentally. Future work on this would involve discussing
fields on less symmetric gratings (elliptical/ hyperbolic curvature), and elliptical
or CVB’s on these circular gratings.
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sphere, stokes parameters, and the angular momentum of light. Physical
Review Letters, 107, 2011.

[74] D. Naidoo and et. al. Controlled generation of higher-order poincaré sphere
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A. Circular Diffraction Grating Pitch

Appendix A Circular Diffraction Grating Pitch

As seen in Fig. .1,the interference pattern on film, centered at the origin, can be
calculated by considering the superposition of the incident and refelcted wave on
the film:

Efilm = E1(y = 0) + E2(y = 0), (A.1)

where E1 and E2 are the directly incident and reflected field of the inscription
beam respectively.

E1 = E0e
i(k1·r−ωt), E2 = E0e

−i(k2·r−ωt) (A.2)

The intensity of the summed field in Eq. A.1 can be calculated using the expression
found in Eq. 2.1.30 and the known wavevectors shown in Fig. .1:

λI =
2π

∆k · r
=

λbeam
x sin (2θcdg) + y cos (2θcdg)− y

. (A.3)

It can be seen that this is a general equation for which different planes of interfer-
ence, aside from (y=0) can be used for other pitch inscriptions with variable ellipse
dimensions. One can imagine having different conic slices for the dimensions of
the grating with constant pitch.
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B. Poincaré Sphere/Stokes Vectors Extra

Figure .1: CDG cross section diagram with known beam inscription wavevector

Simply substitutiing (y=0) into Eq. A.3 the known pitch inscription is recov-
ered.

Λ = λbeam csc 2θcdg (A.4)

Appendix B Poincaré Sphere/Stokes Vectors Extra

Continued calculation of field dependecies

Note: The following calculation is referenced from two textbooks; Born’s Princi-
ples of Optics and Collett’s Opitcal Engineering: Polarized Light[70][85].

Using Eq. 2.1.49 and Eq. 2.1.48 with substitution of Eq. 2.1.43 and 2.1.44,
two new independent equations are formed below with the common sum-angle
identities:

E0x′(cos τ cosφ0 − sin τ sinφ0) =E0x(cos τ cosφ1 − sin τ sinφ1) cosψ

+ E0y(cos τ cosφ2 − sin τ sinφ2) sinψ;

±E0y′(sin τ cosφ0 + cos τ sinφ0) =E0x(cos τ cosφ1 − sin τ sinφ1) sinψ

+ E0y(cos τ cosφ2 − sin τ sinφ2) cosψ.

96



B. Poincaré Sphere/Stokes Vectors Extra

Subsequently substituting τ = 0 and τ = π/2 into the preceeding eqautions above
give us 4 equations from which relationships between the unknown coefficients of
the rotated general ellipse in Eq. 2.1.49:

E0x′ cosφ0 = E0x cosφ1 cosψ + E0y cosφ2 sinψ, (B.1)

E0x′ sinφ0 = E0x sinφ1 cosψ + E0y sinφ2 sinψ, (B.2)

±E0y′ cosφ0 = E0x sinφ1 sin(ψ)− E0y sinφ2 cos(ψ), (B.3)

±E0y′ sinφ0 = −E0x cosφ1 sinψ + E0y cosφ2 cosψ, (B.4)

Squaring and adding Eq. B.1 and Eq. B.2 together we obtain:

E2
0x′ cos2 φ0 + E2

0x′ sin2 φ0 =E2
0x cos2 φ1 cos2 ψ + E2

0y cos2 φ2 sin2 ψ

+E2
0x sin2 φ1 cos2 ψ + E2

0y sin2 φ2 sin2 ψ

+2E0xE0y cosφ1 cosφ2 cosψ sinψ

+2E0xE0y sinφ1 sinφ2 cosψ sinψ,

where the equivalency can be compressed further by collecting like terms and
using the Pythagorean and angle sum identities,

E2
0x′ = E2

0x cos2 ψ + E2
0y sin2 ψ + 2E0xE0y cosψ sinψ cosφ, (B.5)

where φ is defined in Eq. 2.1.37. Simlarly, Eq. B.3 and Eq. B.4 can be manipulated
in the same manner to produce:

E2
0y′ = E2

0x sin2 ψ + E2
0y cos2 ψ − 2E0xE0y cosψ sinψ cosφ, (B.6)

Adding Eq. B.5 and Eq. B.6 together the following relationship is found:

E2
0x′ + E2

0y′ = E2
0x + E2

0y. (B.7)

Multiplying Eq. B.1 and Eq. B.3:

±E0x′E0y′ cos2 φ0 =E2
0x cosφ1 sinφ1 cosψ sinψ − E2

0y cosφ2 sinφ2 cosψ sinψ

+E0xE0y(cosφ2 sinφ1 sin2 ψ − sinφ2 cosφ1 cos2 ψ),

similarly multiplying Eq. B.2 and Eq. B.4:

±E0x′E0y′ sin2 φ0 =E2
0y cosφ2 sinφ2 cosψ sinψ − E2

0x cosφ1 sinφ1 cosψ sinψ

+E0xE0y(cosφ2 sinφ1 cos2 ψ − sinφ2 cosφ1 sin2 ψ),
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and adding these two expressions together and simplyfying we are left with the
following expression:

±E0x′E0y′ =E0xE0y(cosφ2 sinφ1 − sinφ2 cosφ1)

=E0xE0y sin (−φ)

∓E0x′E0y′ =E0xE0y sinφ (B.8)

It can also be seen that the divison of Eq. B.3 by Eq. B.1, and Eq. B.4 by Eq. B.2
gives the following triple equality and the elimination of E0x′ and E0y′ :

E0y′

E0x′
=
E0x sinφ1 sinψ − E0y sinφ2 cosψ

E0x cosφ1 cosψ + E0y cosφ2 sinψ
=
−E0x cosφ1 sinψ + E0y cosφ2 cosψ

E0x sinφ1 cosψ + E0y sinφ2 sinψ

=⇒E2
0x sinψ cosψ + E0xE0y(sinφ1 sinφ2 sin2 ψ + cosφ1 cosφ2 sin2 ψ)

=E2
0y sinψ cosψ + E0xE0y(sinφ1 sinφ2 cos2 ψ + cosφ1 cosφ2 cos2 ψ)

=⇒E2
0x sinψ cosψ + E0xE0y cosφ sin2 ψ

=E2
0y sinψ cosψ + E0xE0y cosφ cos2 ψ

=⇒(E2
0x − E2

0y) sinψ cosψ = E0xE0y cosφ(cos2 ψ − sin2 ψ)

=⇒(E2
0x − E2

0y) sin 2ψ = 2E0xE0y cosφ cos 2ψ (B.9)

It’s convenient to introduce a trigonometric substitution:

E0y

E0x
= tanα, 0 ≤ α ≤ π

2
, (B.10)

since the right hand side of Eq. B.9 simplifies, using known Trig. identites, to the
following,

tan 2ψ =
2E0xE0y

E2
0x − E2

0y

cosφ =
2 tanα

1− tan2 α
cosφ = tan 2α cosφ. (B.11)

Similarly Eq. B.8 divided by Eq. B.9 and using another convenient Trig. substi-
tution:

∓E0y′

E0x′
= tanχ, −π

4
≤ α ≤ π

4
, (B.12)

the following expression is obtained using more Trig identites:

2E0x′E0y′

E2
0x′ + E2

0y′
=

2E0xE0y

E2
0x + E2

0y

sinφ

=⇒ 2 tanχ

1 + tanχ
=

2 tanα

1 + tanα
sinφ

=⇒ sin 2χ = sin 2α sinφ. (B.13)
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In summary, it is seen by Eq.’s B.7, B.11, and B.13, if E0x, E0y and φ are
known with respect to an arbitrary axes then one can determine the orientation
and ellipticity of the plane of polarization. Likewise, if E0x′ , E0y′( amplitude of
vertex,co-vertex along the semi-major,minor axes respectively),ψ (the rotation
angle away from the reference coordinate axes) are known, then one can calculate
the previously mentioned (E0x, E0y, φ).

Stokes Parameters and it’s relationship with the Poincaré Sphere
Transformations

The Stokes parameters completely describe the polarization field of a plane wave.

S0 = E2
0x + E2

0y

S1 = E2
0x − E2

0y

S2 = 2E0xE0y cosφ

S3 = 2E0xE0y sinφ (B.14)

S0 is simply proportional to the total intensity of the field as described by the
inner product description I ∝ 〈E · E〉, where the field amplitudes can be writ-
ten effectively as E = [E0x, E0y], omitting the phase information that would be
destroyed in the inner product. S1 is proportional to the preponderence of hor-
izontal polarization over vertical, S2 is the preponderance of +45o polarization
over −45o polarized fields, and lastly S3 is the preponderance of right-handed
circularly polarized light over left-handed circularly polarized light. Where the
chirality is determined rotation direction when viewed in the direction of the light
source. Moreover, it can be shown that S0 is dependent on the other parameters
with the following relation:

S2
0 = S2

1 + S2
2 + S2

3 (B.15)

Explicitly showing this relation with the Pythagorean identity:

S2
0 =E4

0x + E4
0y + 2E2

0xE
2
0y

S2
1 + S2

2 + S2
3 =(E4

0x + E4
0y − 2E2

0xE
2
0y)

+ 4E2
0xE

2
0y cos2 φ+ 4E2

0xE
2
0y sin2 φ

=(E4
0x + E4

0y − 2E2
0xE

2
0y)

+ ‘4E2
0xE

2
0y(cos2 φ+ sin2 φ)

=E4
0x + E4

0y + 2E2
0xE

2
0y

99
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Trigonometric substitutions of the stokes parameters can be made as the following:

S1 = S0 cos 2χ cos 2ψ

S2 = S0 cos 2χ sin 2ψ

S3 = S0 sin 2χ

The equivalence of these relations are shown below:

S3 = 2E0xE0y sinφ =(E2
0x + E2

0y) sin 2χ

=S0 sin 2χ,

from the derivation of Eq. B.13. Similarly it can be shown with the derivation of
Eq. B.11:

S2 = 2E0xE0y cosφ =(E2
0x − E2

0y) tan 2ψ

=S1 tan 2ψ.

Substituting this into Eq. B.15 along with the relationship of s3 we get the fol-
lowing:

S2
0 =s2

1 + (S1 tan 2ψ)2 + (S0 sin 2χ)2

=S2
1(1 + tan2 2ψ) + S2

0 sin2 2χ

=⇒ S2
1 =

S2
0(1− sin2 2χ)

1 + tan2 2ψ

= S2
0 cos2 2χ cos2 2ψ

=⇒ S1 =S0 cos 2χ cos 2ψ.

In a similar fashion, by back substituting the new Trig. relationship of S1, and the
known expression of S3, into the same relationship for S0, we get the following:

S2
0 =(S0 cos 2χ cos 2ψ)2 + S2

2 + (S0 sin 2χ)2

S2
0 =S2

0(cos2 2χ cos2 2ψ + sin2 2χ) + S2
2 ,

=⇒ S2
2 =S2

0(1− sin2 2χ− cos2 2χ cos2 2ψ)

=S2
0(cos2 2χ− cos2 2χ cos2 2ψ)

=S2
0 cos2 2χ(1− cos2 2ψ)

=S2
0 cos2 2χ sin2 2ψ,

=⇒ S2 =S0 cos 2χ sin 2ψ.

It is important to take note that these auxilliary angles (χ, ψ) are not observables
but instead just a mathematical tool to visualize the polarization states with uni-
tary intensity as points on a unit sphere. Stokes first described the paramters
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when studying unpolarized light, and were used to describe the degree of polar-
ization. In fact, the equality held for fully polarized planes waves in Eq. B.15 in
general is an inequality relationship for partially polarized beams given by:

S2
0 ≥ S2

1 + S2
2 + S2

3 . (B.16)

Appendix B.1 Time-Average of the Polarization Ellipse

The explicit removal of the time dependence of Eq. 2.1.47 was simply of conve-
nience of algebraic manipulation. The replacement of the time dependence in the
total field expression leads to the following:

Ex(t)2

E2
0x

− 2
Ex(t)

E0x

Ey(t)

E0y
cos(φ) +

Ey(t)
2

E2
0y

= sin2(φ), (B.17)

where the amplitudes and phase shift are effectively independent in time when
the light is monochromatic.

Taking the time average of this polarization eclipse to be able to predict the
observables of the field, the following operator is used:

〈EiEj〉 = lim
T→∞

1

T

∫ T

0
Ei(t)E

∗
j (t)dt, i, j = x, y (B.18)

where T is the period of the field and (∗) indicating the complex conjugate.
In particular, taking the time averaged operator of Eq. B.17; is equivalent

to an observation made for long periods of time with reference to the period of
oscillation, shown as the following:

4E2
0y〈Ex(t)2〉+ 4E2

0x〈Ey(t)2〉 − 8E0xE0y〈Ex(t)Ey(t)〉 cos(φ) = (2E0xE0y sin(φ))2

(B.19)
The operators are simply calculated with a complex plane wave as shown:

〈E2
x〉 = lim

T→∞

1

T

∫ T

0
(E0xRe{ei(kz−ωt+φ1)})(E0xRe{e−i(kz−ωt+φ1)})dt

= lim
T→∞

1

T

∫ T

0
E2

0x cos2 (kz − ωt+ φ1)dt

= lim
T→∞

1

T

∫ T

0
E2

0x

(1

2
+

cos 2((kz − ωt+ φ1))

2

)
dt

= lim
T→∞

1

T
E2

0x

(1

2
t
∣∣∣T
0
− 1

4ω
sin 2i(kz − ωt+ φ1)

∣∣∣T
0

)
(B.20)

Note, since T is presupposed to be the period of the oscillation, the second term
cancels out to zero and we’re left with the following from Eq. B.20:

〈E2
x〉 = lim

T→∞

1

T

1

2
E2

0xT =
1

2
E2

0x, (B.21)
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and similarly,

〈E2
y〉 =

1

2
E2

0x. (B.22)

The last time-averaged term in Eq. B.19 is given below:

Ex(t)Ey(t)
∗ = E0xE0yRe{ei(kz−ωt+φ1)}Re{e−i(kz−ωt+φ2)}

=
1

4
E0xE0y(e

i(kz−ωt+φ1) + e−i(kz−ωt+φ1))

× (e−i(kz−ωt+φ2) + ei(kz−ωt+φ2))

=
1

4
E0xE0y(e

i(φ2−φ1) + e−i(φ2−φ1)

+ e−i(2(kz−ωt)+(φ1+φ2)) + ei(2(kz−ωt)+(φ1+φ2)))

=
1

2
E0xE0y(cosφ+

1

2
e−i(2(kz−ωt)+(φ1+φ2))

+
1

2
ei(2(kz−ωt)+(φ1+φ2))) (B.23)

integrating the expression to find the time-averaged value we get:

〈Ex(t)Ey(t)
∗〉 =

1

2
E0xE0y cosφ, (B.24)

and finally substituting these values into Eq. B.19

2E2
0xE

2
0y + 2E2

0yE
2
0x − (2E0xE0y cosφ)2 = (2E0xE0y sinφ)2. (B.25)

Completing the square, Eq. B.25 is altered by adding and subtracting E4
0x +E4

0y

to the left hand side and factoring to obtain:

(E2
0x + E2

0y)
2 − (E2

0x − E2
0y)

2 − (2E0xE0y cosφ)2 = (2E0xE0y sinφ)2, (B.26)

where Eq. B.26 has recovered Eq. B.15. Specifically the stokes parameters given
a plane wave can be written as:

S0 = ExE
∗
x + EyE

∗
y (B.27)

S1 = ExE
∗
x − EyE∗y (B.28)

S2 = ExE
∗
y + E∗xEy (B.29)

S3 = i(ExE
∗
y − E∗xEy) (B.30)

A very standard polarization transformation is to shift the phase of the orthog-
onal field components (Ex, Ey) in opposing directions by a fixed amount, e±iφr/2,
respectively:

E′x = Exe
iφr

2 , E′y = Eye
−iφr

2 . (B.31)
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A beam with a retarded phase (φr), is sent through a linear polarizer with a
transmission axis rotated an angle θ from the x-axis. Then the beam with field
components of Eq. B.31 is transformed by the linear polarizer in the following
way:

E = E′x cos θ + E′y sin θ (B.32)

Calculating the Intensity of the beam passing through the linear polarizer:

I(θ, φ) =E · E∗

=ExE
∗
x cos2 θ + EyE

∗
y sin2 θ + (ExE

∗
ye
iφ + E∗xEye

−iφ) cos θ sin θ

=
1

2
ExE

∗
x(1 + cos 2θ) +

1

2
EyE

∗
y(1− cos 2θ) + (ExE

∗
ye
iφ + E∗xEye

−iφ) sin 2θ

=
1

2
((ExE

∗
x + EyE

∗
y) + (ExE

∗
x − EyE∗y) cos 2θ

+ (ExE
∗
y + EyE

∗
x) cosφ sin 2θ + i(ExE

∗
y − EyE∗x) sinφ sin 2θ),

The Stokes parameters can easily be substituted into this expression:

1

2
(S0 + S1 cos 2θ + S2 cosφ sin 2θ + S3 sinφ sin 2θ) (B.33)

Using the linear polarizer at 3 different angles (0o,+45o,+90o) with no retardance
(φ = 0o), and a polarizer angle and retardance of,θ = +45o, φ = +90o, (using
a quarter-wave plate) the Stokes parameters can be rewritten in terms of the
quantitative Intensity values as shown below:

I(0, 0) =
1

2
(S0 + S1), I(45, 0) =

1

2
(S0 + S2),

I(90, 0) =
1

2
(S0 − S1), I(45, 90) =

1

2
(S0 + S3).

Solving for the Stokes parameters we find

S0 = I(0, 0) + I(90, 0), S1 = I(0, 0)− I(90, 0),

S2 = 2I(45, 0)− I(0, 0)− I(90, 0), S3 = 2I(45, 90)− I(0, 0)− I(90, 0).
(B.34)

Appendix C Mueller Matrics and Polarimetry

The Mueller matrix is formed by assuming that under a field transformation, the
corresponding transformed stokes vector of the field transformation can be repre-
sented as a linear combination of the intial stokes vectors. Specifically, it can be
shown with the field transformations: Ei,j → pi,jE

′
i,j(0 ≤ pi,j ≤ 1), Ei(+),j(−) →
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e±iφ/2Ei,j , Ei(+),j(−) → Ei,j cos θ±Ej,i sin θ (Linear Polarizer,Compensator,Rotator),
that the corresponding mueller matrices are as follows:

M̄L =
p2

2


1 cos 2γ 0 0

cos 2γ 1 0 0
0 0 sin 2γ 0
0 0 0 sin 2γ

 ; px = p cos γ, py = p sin γ,

(C.1)

M̄C =


1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ

 . (C.2)

Where pi,j are attenuation coefficients and φ is a simple phase shift. Similar to the
Jones rotation matrices in the Jones vector spaces, the Mueller operator space also
has a corresponding rotation matrix with an identical transformation algorithm
as follows:

M̄
′
(2θ) = M̄R(−2θ)M̄M̄R(2θ). (C.3)

Where M̄R(2θ) is the rotation Mueller matrix for a given rotation θ:

M̄R(2θ) =


1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

 (C.4)

This rotation of a Mueller matrix corresponds to the physical rotation of a polar-
izing element in the beams path. A clever way to measure the polarization of a
plane wave in recent years has been to measure the intensity of a beam through
a rotating quarter-wave plate (φ = π/2) and a horizontal linear polarizer. With
Mueller matrices a theoretical stokes vector can be computed via matrix multi-
plication representing the initial optical setup:

M̄L(γ = 0)
(
M̄
′
C,φ=π/2(2θ)

)
= M̄L(γ = 0)

(
M̄R(−2θ)M̄C,φ=π/2M̄R(2θ)

)
(C.5)

Transforming Eq. C.5 onto an arbitrary Stokes vector we get the folowing Stokes
vector:

1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 cos2 2θ sin 2θ cos 2θ − sin 2θ
0 sin 2θ cos 2θ sin2 2θ cos 2θ
0 sin 2θ − cos 2θ 0



S0

S1

S2

S3

 =
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1

2
(S0 + S1 cos2 2θ + S2 sin 2θ cos 2θ − S3 sin 2θ)


1
1
0
0

 (C.6)

Importantly, it is seen from Eq. C.6 that the total intensity of the beam through
the rotated quarter-wave plate and horizontal linear polarizer is equal to the
following:

I =
1

2
(S0 + S1 cos2 2θ + S2 sin 2θ cos 2θ − S3 sin 2θ)

=
1

2
(S0 + S1(

1

2
+

cos 4θ

2
) +

S2 sin 4θ

2
− S3 sin 2θ)

=
1

2
(S0 +

S1

2
− S3 sin 2θ + S1 cos 4θ +

S2 sin 4θ

2
). (C.7)

Since the stokes components are derived by an observational averaged Intensity,
a linear combination of them is also observational. Noticing that we have a trun-
cated fourier series with harmonics of 2θ. Specifically the series is given by the
following expression:

I(θ) =
1

2
(A−B sin 2θ + C cos 4θ +D sin 4θ), (C.8)

where the coefficients of the harmonic series given by:

A = S0 +
S1

2
B = S3 C =

S1

2
D =

S2

2
(C.9)

The construction where θ is the rotation of fast axis away from the x-axis. Where
the quarter-waveplate is a birefringent material with two paths of propagation and
generalizing θ = ωt, where ω is the angular frequency of the quarter-waveplate.
It is easily seen that the coefficients (A,B,C,D) can be recovered from some ele-
mentary Fourier analysis. In fact, the coefficients equal the following expressions:

A =
1

π

∫ 2π

0
I(θ)dθ, B = − 2

π

∫ 2π

0
I(θ) sin 2θdθ,

C =
2

π

∫ 2π

0
I(θ) cos2 4θdθ, D =

2

π

∫ 2π

0
I(θ) sin2 4θdθ. (C.10)

Since intensity measurements can only be taken finitely many times it’s crucial
to make sure that enough data points are collected between θ = 0 and θ =
2π. Note that by the Nyquist-Shannon sampling theorem the integrals defining
the harmonic coefficients must be represented by a minimum of 8 measurements
between the integral bounds. In general the integrals in the set of equations can
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be computed by the following measurements:

A ≈ 2

N

N∑
n=1

I(nθs), B ≈ − 4

N

N∑
n=1

I(nθs) sin 2nθs

C ≈ 4

N

N∑
n=1

I(nθs) cos 4nθs, D ≈ 4

N

N∑
n=1

I(nθs) sin 4nθs (C.11)

The sums represent an approximation to the true integral with N measurements
with an angular step size of θs, where taking multiple measurements reduces the
error of the calculated coefficients. Furthermore, and most importantly, the stokes
parameters of the incident beam can be calculated by a rearrangement of the set
in Eq. C.10:

S0 = A− C, S1 = 2C

S2 = 2D, S3 = B. (C.12)

Appendix D Spatial Intensity Profile Code

Below is a sample code showing how to generate arbitrarily snalges linear polar-
izers for a single and two polarizer system with a circular grating generating an
SPR signal at the unitless wavelength in the simulation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##packages used in the python l i b r a r i e s##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
import p l o t l y . i o as py
import numpy as np
import p l o t l y . g raph ob j e c t s as go
from PIL import Image
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##o r i e n t a t i o n o f po la r imetry parameters in degree s##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
deg1=60 #angle from the x−a x i s in the
counte r c l o ckw i s e d i r e c t i o n o f the f i r s t l i n e a r
p o l a r i z e r#
deg2=90 #angle from the x−a x i s in the
counte r c l o ckw i s e d i r e c t i o n o f the second l i n e a r
p o l a r i z e r#

##conver t ing p o l a r i z e r ang le to rad ians##
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phi1=(np . p i /180)∗ deg1
phi2=(np . p i /180)∗ deg2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
dx=2000 # number o f i t e r a t i o n s f o r s imu la t i on curves#
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##i n t e n s i t y p r o f i l e f unc t i on##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
de f l i n e a r 1 d e n s i t y (x , a , phi1 ) :

r e turn (np . s i n (np . arctan ( a/x)−phi1 )∗∗2)
#normal ized i n t e n s i t y p r o f i l e o f the spr f i e l d
with one i n c i d e n t l i n e a r p o l a r i z e r#

def l i n e a r 2 d e n s i t y (x , a , phi1 , phi2 ) :
r e turn (np . s i n (np . arctan ( a/x)−phi1 )∗np . s i n (np .

arctan ( a/x)−phi2 ))∗∗2
#normal ized i n t e n s i t y p r o f i l e o f the spr f i e l d
o f a c i r c u l a r g ra t ing with a c r o s s l i n e a r
p o l a r i z e r setup#

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##Def in ing a func t i on to i t e r a t e over the parameter
a ( ’ y−axis ’ ) ##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

de f contour (x , a , phi ) :
x0=np . l i n s p a c e (−x , x , dx )
re turn l i n e a r 1 d e n s i t y ( x0 , a , phi )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a0=np . l i n s p a c e (−1 ,1 ,dx ) #d e f i n i n g the y−a x i s s c a l e#
z =[ ] #d e f i n i n g empty l i s t to add h o r i z o n t a l c r o s s
s e c t i o n s to be added#
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i in a0 :

z . append ( contour (1 , i , phi ) ) #c r e a t i n g the l i s t o f
c r o s s s e c t i o n s#

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing 2D s imu la t i on#
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#co lour s c a l e s e t t i n g parameters f o r the contour
mapping o f the i n t e n s i t y p r o f i l e s imu la t i on#
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o l o r s c a l e = [ [ 0 , ’ black ’ ] , [ 0 . 5 , ’ grey ’ ] , [ 1 , ’ white ’ ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#s t i t c h i n g toge the r the l i s t o f h o r i z o n t a l s e c t i o n s ( z ) and then gene ra t ing an image with Figure#
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i g = go . Figure ( data =

go . Contour ( z=z , x=np . l i n s p a c e (−1 ,1 ,dx ) , y=np .
l i n s p a c e (−1 ,1 ,dx ) , c o n t o u r s c o l o r i n g =’heatmap ’ ,
l i n e w i d t h =0, c o l o r s c a l e=c o l o r s c a l e , zmin=0,
zmax=1))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
##e n l a r g i n g the generated image s imu la t i on##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i g . update layout ( width=round (13 .6/13∗dx ) ,
he ight=dx , f ont=d i c t ( s i z e =40) , a u t o s i z e=False )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

##saving the s im luat i on to a png f i l e##
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
py . wr i te image ( f i g , ’60 Theory . png ’ , format=’png ’ )

Appendix E Chirped Circular Gratings

The chirped grating setup simply adds an additional focusing lens in series, prior
to the CDG. This curves the wavefront and rays hitting the CDG surface are
reflected at distinct angles, and specifically creating a non-linear chirped grating
pitch dependent on the location of the focal point along the optical axis.
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Figure .2: Chirped pitch circular diffraction grating experimental setup (diverging) - (i)
Lens where CDG is set after focal point

Figure .3: Chirped pitch circular diffraction grating experimental setup (converging) -
(i) Lens where CDG is set before focal point

If the focal point is behind the sample (converging) as in Fig. .2, the chirped
gratings produced have increasing pitch from the center of the grating(if the CDG
has the critical height hc), to the edge of the grating. Inversely, if the focal point
is prior to the sample (diverging) as in Fig. .3, the pitch decreases from the center
to the edge of the grating.
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Appendix F CDG/AFM Extra

 

(i) (ii) 

(iii) (iv) 

(v) (vi) 

Figure .4: Sequence of AFM surface scans (10µmx10µm) of a CG inscribed with 488nm
wavelength laser light. The scans were taken along a single ray with inscreasing dis-
tances from the center: (i)2500µm, (ii)3000µm, (iii)3500µm, (iv)4000µm, (v) 4500µm,
(vi)5000µm. Note: All graphs share common colour and axis scales 110
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Figure .5: Transmission images of a 668nm pitch CG with varying spectrum wavelength
peaks and bandwidths. Wavelength peaks denoted in the bottom left of each image
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