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Abstract 

Circular diffraction gratings have been formed by a new holographic technique using a circular diffraction 

grating generator.  This specially designed fixture consists of a mirror in the shape of the interior of a 

truncated cone that splits and redirects a beam of coherent and collimated light to form an interference 

pattern of concentric rings.  The interference pattern can be directly inscribed in surface-relief on a thin 

film of azobenzene functionalized glass forming compound.  The derived theory correctly predicts that 

the pitch of the resulting circular gratings can be controlled by altering the geometry of the mirrored 

fixture.  The inscription optical geometry can be further modified by adding a focusing lens and by 

changing the position of the focal point of inscribing light with respect to the sample film, affecting the 

rate of change of the pitch.  Ring gratings with a relatively smooth centre can be created by lowering the 

height of the mirrored fixture below a certain critical height.  The interior and exterior radii, the grating 

pitch, and the rate of pitch change (or chirp) of the resulting circular gratings can therefore be controlled, 

adding additional flexibility to the manufacturing process.  The result is a relatively large scale circular or 

ring grating, on the order of 1 cm diameter, that can be quickly and easily fabricated using common 

optical lab equipment to meet photonic applications specific requirements.   
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Résumé 

Des réseaux de diffraction circulaires ont été formées par une technique holographique en utilisant un 

générateur des réseaux de diffraction circulaires. Cette monture, spécialement conçue, consiste d'un 

miroir en forme de l'intérieur d'un cône tronqué, qui divise et redirige un faisceau de lumière cohérente 

pour former un patron d'interférence d'anneaux concentriques. Le patron d'interférence peut être inscrit 

directement en réseau de surface sur un film d’un verre fonctionnalisé d'azobenzéne. La théorie dérivée 

prédit correctement que le pas des réseaux circulaires résultants peut être contrôlé en modifiant la 

géométrie de la monture d'inscription. La géométrie optique d’inscription peut être encore modifiée par 

l'ajout d'une lentille ainsi qu’en changeant la position du point focal du rayon d’inscription par rapport au 

échantillon, ce qui affecte le taux de variation du pas.  Des réseaux en anneaux ayant un centre 

relativement lisse peuvent être créés en diminuant la hauteur de la monture au-dessous d'une certaine 

taille critique. Les rayons intérieur et extérieur, le pas du réseau, et le taux de changement du pas peuvent 

donc tous être contrôlés. Le résultat est un réseau circulaire relativement grand de l'ordre de 1 cm de 

diamètre, qui peut être rapidement et facilement fabriqué en utilisant des équipements communs dans les 

laboratoires d’optique, afin de répondre aux exigences spécifiques des applications photoniques. 

   



v 
  

 

 Table of Contents 

Abstract………………………………………………………………………………………………….....iii 

Résumé……………………………………………………………………………………………………..vi 

List of Tables……………………………………………………………………………………………...vii 

List of Figures……………………………………………………...…………………………………......viii 

List of Abbreviations……………………………………………………………………………………….x 

List of Symbols…………………………………………………………………………………………….xi 

CHAPTER 1:	 INTRODUCTION ............................................................................................................ 1	

1.1	 Definitions and Properties of Diffraction Gratings ....................................................................... 1	

1.2	 Early History of Diffraction Gratings ........................................................................................... 3	

1.3	 Modern applications of diffraction gratings .................................................................................. 5	

1.4	 Photo-induced movement in azobenzene materials ...................................................................... 7	

1.5	 Goal of Research ........................................................................................................................... 8	

1.6	 Thesis Structure ............................................................................................................................. 9	

CHAPTER 2:	 LITERATURE REVIEW ............................................................................................... 11	

2.1	 Manufacturing techniques for diffraction gratings. .................................................................... 11	

2.2	 Manufacturing of surface relief gratings in Azo-functionalized materials ................................. 13	

2.3	 Applications for Circular Diffraction Gratings ........................................................................... 15	

CHAPTER 3:	 THEORY ........................................................................................................................ 17	

3.1	 Light as an electromagnetic wave ............................................................................................... 17	

3.2	 Interference of light ..................................................................................................................... 21	

3.3	 Diffraction of light ...................................................................................................................... 22	



vi 
 

3.4	 Diffraction gratings and the grating equation ............................................................................. 24	

3.5	 Analysis of the fabrication of constant pitch circular gratings using a planar wave front .......... 31	

3.6	 Analysis of the fabrication of chirped pitch circular gratings using curved wave fronts ........... 33	

3.7	 Critical height of the CDG .......................................................................................................... 37	

CHAPTER 4:	 Experimental Procedure .................................................................................................. 42	

4.1	 Preparation of the Azo-glass samples ......................................................................................... 42	

4.2	 Manufacturing and measuring of the CDG fixtures .................................................................... 42	

4.3	 Inscription of constant pitch circular gratings using a planar wave front ................................... 44	

4.4	 Measurement techniques for grating pitch .................................................................................. 47	

4.5	 Inscription of chirped pitch circular gratings with a curved wave front ..................................... 49	

CHAPTER 5:	 RESULTS ....................................................................................................................... 53	

5.1	 Results from the real time diffraction efficiency measurements ................................................ 53	

5.2	 Results from constant pitch circular SRGs produced with planar wave fronts .......................... 54	

5.3	 Results from chirped pitch circular SRGs ................................................................................... 61	

CHAPTER 6:	 CONCLUSION ............................................................................................................... 74	

References ........................................................................................................................................... 77	

Appendix A:	 Code for ray trace simulation of CDG with converging and diverging wave fronts . 80	

Appendix B:	 Papers published from research .................................................................................. 83	

 

  



vii 
 

List of Tables 

Table 4.1 – Nominal and measured CDG angles. ....................................................................................... 44 
 
Table 4.2 – Measured height compared to critical height for the 5 CDGs used in the collimated beam 
experiment. .................................................................................................................................................. 47 
 
Table 4.3 – Critical height of a CDG as the distance from the sample to point source (s) varies.. ............ 51 
 
Table 5.1 – Theoretical results compared to measured results from AFM scans of grating pitch for five 
circular SRGs made from CDGs with different angles.. ............................................................................. 58 
 
Table 5.2 - Theoretical results compared to measured results from SEM imagery of grating pitch for four 
circular SRGs made from CDGs with different angles. .............................................................................. 60 
 
Table 5.3 - Theoretical results compared to measured results of grating pitch calculated from diffraction 
angle measurements for five circular SRGs made from CDGs with different angles. ............................... 60 
 
Table 5.4 – Rate of change in grating pitch over distance from centre of chirped SRG for the 5 tested 
distances to the inscribing point source. ..................................................................................................... 69	
 

  



viii 
 

List of Figures 

Figure 1.1 – Transmission amplitude grating. .............................................................................................. 1 
 
Figure 1.2 – Several examples of possible grating profiles. ......................................................................... 3 
 
Figure 1.3 – A Fresnel zone plate ................................................................................................................. 5 
 
Figure 1.4 –Azobenzene molecules .............................................................................................................. 8 
 
Figure 2.1 – Schematic of a Lloyd mirror ................................................................................................... 14 
 
Figure 3.1 – A graph representing the superposition of waves. .................................................................. 22 
 
Figure 3.2 – Diffraction of a wave through a slit. ....................................................................................... 23 
 
Figure 3.3 – The interference pattern in the shadow of this razor blade ..................................................... 24 
 
Figure 3.4 – Schematic of the geometry used to theoretically describe the far-field interference pattern 
from an array of coherent point sources. ..................................................................................................... 25 
 
Figure 3.5 – Graph of irradiance versus diffraction angle .......................................................................... 28 
 
Figure 3.6 – Schematic showing the geometry of a CDG with a mirror angle θ when it is exposed to a 
planar wave front ........................................................................................................................................ 31 
 
Figure 3.7 – Schematic for the geometry of a divergent point source used with a CDG to create chirped 
circular gratings ........................................................................................................................................... 34	
 
Figure 3.8 - Schematic for the geometry of a convergent source to a virtual point A using a CDG to create 
chirped circular gratings .............................................................................................................................. 36 
 
Figure 3.9 – Geometry to calculate the critical height of the CDG with collimated beam ......................... 38	
 
Figure 3.10 - Geometry to calculate the critical height of the CDG with divergent beam ......................... 39	
 
Figure 3.11 – Figure demonstrating the geometery of the maximum critical height for a CDG with a 
converging light source ............................................................................................................................... 41	
 
Figure 4.1 – A Circular Diffraction Grating Generator or CDG for short. ................................................. 43	
 
Figure 4.2 – Experimental setup for inscription of constant pitch circular gratings. .................................. 45	
 
Figure 4.3 – Experimental set-up for measurement of real time diffraction efficiency. ............................. 46	
 
Figure 4.4 – Side view of the direct diffraction angle measurement set-up. .............................................. 49	
 
Figure 4.5 – Experimental setups for inscription of chirped pitch circular gratings.. ................................ 50	
 
Figure 5.1 – Real-time first order diffraction efficiency of a circular SRG ................................................ 53	
 



ix 
 

Figure 5.2 – The first order diffraction maximum is an arc of a circle ....................................................... 54	
 
Figure 5.3 – A circular SRG with radius of approximately 11mm ............................................................. 55	
 
Figure 5.4 – A photograph of the diffraction pattern produced from a circular SRG ................................ 56	
 
Figure 5.5 - AFM scan of circular SRG generated by a 19.4 degree CDG. ............................................... 57	
 
Figure 5.6 - SEM imagery of circular SRG generated from a 19.4 degree CDG ....................................... 59	
 
Figure 5.7 - Theoretical and measured results of the SRGs pitch as a function of CDG mirror angle θ. ... 61	
 
Figure 5.9 – Simulation schematic for a diverging source ......................................................................... 63	
 
Figure 5.10 - Simulation schematic for a converging source. .................................................................... 64	
 
Figure 5.11 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 
diverging point source 3 cm away from sample. ........................................................................................ 66	
 
Figure 5.12 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 
diverging point source 6 cm away from sample. ........................................................................................ 66	
 
Figure 5.13 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 
diverging point source 9 cm away from sample. ........................................................................................ 67	
 
Figure 5.14 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 
converging point source -10 cm away from sample. .................................................................................. 68	
 
Figure 5.15 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with 
converging point source -20 cm away from sample. .................................................................................. 68	
 
Figure 5.16 - The dependence of grating pitch on distance from the center of the grating for 14 simulated 
circular SRGs .............................................................................................................................................. 72	
 



x 
  

List of Abbreviations 

2D – Two dimensional 

3D – Three dimensional 

AFM – Atomic Force Microscope 

CDG – Circular Diffraction Grating Generator 

DR-1 – Dispersed Red 1 

EM - Electromagnetic 

LED – Light Emitting Diode 

SEM – Scanning Electron Microscope 

SRG - Surface Relief Grating 

  



xi 
 

List of Symbols 

m : Integer value representing diffraction order 

E
r

: Electric field vector  

B
r

: Magnetic field vector 

ε : electric permittivity 

µ : magnetic permeability  

ρ : charge density 

J
r

: current density vector 

ω : angular frequency ( 2ω πν= ) 

ν : frequency of light 

k
v

: wave vector in the direction the wave is travelling whose magnitude is 2 /k π λ=
v

 

λ : wavelength of light 

rv : position vector 

ϕ  : phase (in radians) 

θ : CDG mirror angle 

m : minor aperture radius of CDG 

h : CDG height 

t : difference between radii of CDG major and minor apertures 

s : distance from sample film to focal point of the source 

hc : critical height of CDG where interfering light from the mirror strikes the centre of the circular SRG 
without crossing over to the opposite side  

Λ : Grating pitch (distance between consecutive diffraction grating grooves) 

δ : distance from centre of circular SRG 



1 
  

CHAPTER 1: INTRODUCTION 

1.1 Definitions and Properties of Diffraction Gratings  

A diffraction grating is an optical element with a periodic modulation in its optical 

properties.  This periodic variation can affect the amplitude of incoming light by modulating the 

brightness of the output light.  Alternatively, it can affect the phase of the light by varying the 

optical path length of the output beam.  The result of a typical diffraction grating is that a mono-

chromatic beam of light is split into multiple beams of different orders as illustrated in Figure 1.1.  

It will be seen in the theory section of this thesis that the angle of these beams is dependent on the 

grating spacing (also called pitch), as well as the incident angle and wavelength of the incoming 

light.  As a result of this dependence on wavelength, a beam of polychromatic light can also be 

dispersed by a diffraction grating, creating spatial separation of the beam’s spectral elements.   

 

Figure 1.1 – An incoming beam of monochromatic light is split into different diffraction orders by a transmission 
amplitude grating.  Additional orders are possible, such as m=2 and m=-2 but are not shown.   

There are a wide range of types of diffraction gratings depending on how they are 

manufactured and what applications they are intended for.  As already mentioned, if the grating 

variations are related to changes in the absorption, reflectance, or transmittance characteristics of 
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the material, it is considered an amplitude grating because the grating will affect the amplitude of 

the light.  If the modulation in the grating changes the index of refraction in the material or changes 

the distance travelled in a material before an interface, it is called a phase grating because it is 

affecting the phase position of the light.  Depending on whether the material used is transparent or 

reflective, a diffraction grating can be used as a transmission or reflection optical element.  

Diffraction gratings can have a constant pitch (meaning that the grating spacing is constant) or have 

a chirped pitch (meaning that the grating spacing changes over its surface).  There are linear 

gratings whose structure is made of parallel straight lines as well circular gratings; which are 

formed in the shape of concentric circles.   

Diffraction gratings may also have different profile shapes such as sinusoidal gratings, 

square wave also called binary gratings, triangle gratings, or saw-tooth patterns also known as 

blazed gratings as shown in Figure 1.2.  The profile of the grating can affect the properties of the 

grating such as the diffraction efficiency.  Diffraction efficiency is defined as the optical power 

from a diffraction order divided by the power from the incident light.  Blazed gratings are 

sometimes used to increase the diffraction efficiency of one of the diffraction orders at the expense 

of the power of the other orders.  For example, depending on the blaze angle and wavelength used, 

1st order diffraction efficiencies can range from 50% to approaching 100% efficiency in a blazed 

grating which is much higher than the maximum 1st order efficiencies of 33.8% for sinusoidal 

gratings and 40.5% for square gratings1.   
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Figure 1.2 – Several examples of possible grating profiles.  The profiles may represent changes in amplitude of the 
incoming light due to modulation of the reflectance or transmittance of the grating.  The profiles may also 
represent the physical shape of the grating/air interface as for a surface relief grating (SRG) or changes in the 
index of refraction of the material in a volume phase grating.a 

1.2 Early History of Diffraction Gratings 

One of the earliest recorded examples of scientific observations of a diffraction grating was 

by James Gregory in 1673 when he proposed the experiment of shining a beam of light through a 

fine white feather2.  David Rittenhouse is thought to have made the first man-made diffraction 

grating in 1785 using hair or thin wires evenly spaced across the threads of two parallel screws3.  

This type of grating can be classified as a linear, amplitude, transmission grating and is analogous 

to a multiple slit diffraction configuration. The hairs block light at a regular interval while the 

spaces in between the hairs act as slits.  In 1821 Joseph von Fraunhofer rediscovered this 

technique4 and developed the equation relating the angle of diffracted orders to the grating spacing 

                                                        
a "Waveforms" by Omegatron - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 via 
Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Waveforms.svg#mediaviewer/File:Waveforms.svg 
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and wavelength of light.  Because of this and his numerous contributions to the field of 

spectroscopy, the theory of far field diffraction was later named in his honour.   

Works in the early 19th century by the famous French physicist Augustin-Jean Fresnel also 

contributed to the invention of a specialized circular diffraction grating called a Fresnel Zone Plate.  

Instead of focusing light using refraction, as is the case with a traditional lens, a zone plate focuses 

light using diffraction.  This is accomplished by blocking light from passing through any areas that 

would create destructive interference at the focal point, while allowing light to pass through the 

zones that create constructive interference at the focal point.  Figure 1.3 shows a simple example of 

a binary amplitude zone plate.  In the same manner as with a linear diffraction phase grating, the 

efficiency of a zone plate can be improved by changing the phase of the light in the destructive 

zones by 180 degrees instead of blocking it.  This was an idea that was originally suggested by 

British physicist Lord Rayleigh in 18715 but it was first demonstrated to have more than a six-fold 

improvement in the intensity of the focused light by Robert W Wood in 18986.  Although this 

thesis is not dealing with Fresnel zone plates specifically, the main topic of this thesis is the 

production of circular phase gratings similar to those conceived by Lord Rayleigh and produced by 

Wood.   
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Figure 1.3 – A Fresnel zone plate focuses light by using diffraction and is an example of a specialized circular 
diffraction grating. The example shown here can be classified as a binary amplitude zone plate where the black 
areas represent zones where light is completely blocked and the white areas represent areas where all of the light 
is allowed to pass through.b 

1.3 Modern applications of diffraction gratings 

Diffraction gratings have a wide range of applications.  Because of their ability to disperse 

different frequencies of light, diffraction gratings can often be used as a replacement for prisms.  

One of their most common applications is in spectroscopy where a diffraction grating is used to 

separate the spectral components of a source of light.  A spectrometer can work over a range of 

wavelengths from X-rays to infrared light using different diffraction gratings with optimized 

pitches and grating profiles.  Analysis of the absorption and emission lines of the spectrum can tell 

a great deal about the source of light as well as what sort of materials the light passed through on 

the way to the detector.  For these reasons, spectroscopy can provide a wealth of information in 

fields that use passive observations of light such as astronomy and remote sensing.   

                                                        
b "Zone plate" by Tom Murphy VII - Based on GFDL/cc-by-sa Image:zone plate.png. Licensed under Creative Commons 
Attribution-Share Alike 3.0 via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Zone_plate.svg#mediaviewer/File:Zone_plate.svg 
 



6 
  

Diffraction gratings also change the direction of incoming light through diffraction orders 

higher than zero.  With a carefully chosen combination of wavelength, grating pitch and incident 

angle, this can be used to couple and de-couple light in fibre optics or other optical waveguides.  

Prisms can also be used to couple light in this way; however diffraction gratings have the additional 

flexibility of being able to chirp the grating pitch.  Because of the interdependence between 

wavelength and grating pitch, chirped gratings can be designed as grating band-pass filters or band 

reflectors so that a range of wavelengths are transmitted or reflected.  One example is a fibre Bragg 

grating, which can be made from alternating materials with different indices of refraction within the 

core of a fibre optic.  This type of diffraction grating is known as a volume phase grating since it is 

not the surface of the material, but the volume of the material, that alters the phase of light through 

variations of its index of refraction.  The periodic changes in the index of refraction can be tuned to 

act as a dielectric mirror which maximizes reflection for certain wavelengths through constructive 

interference while limiting transmission through destructive interference.  Chirping the pitch of this 

type of volume phase grating can serve to widen the band of the filter, and has useful applications 

in the field of communication such as in multiplexors in fibre optics7.   

Another interesting application for diffraction gratings is their use for the excitation of 

surface plasmons.  When a thin layer of metal is interfaced with a dielectric material, under the 

right conditions it is possible to excite an electron density fluctuation in the surface of the metal by 

using light.  This electron density wave is called a surface plasmon.  One method of achieving this 

is by tuning the pitch of a diffraction grating on the surface of the metal to the specific plasmonic 

frequency of the interface.  In this case, the diffraction grating changes the momentum of light 

towards the plane of the interface and allows surface plasmon resonance to take place in the metal 

film when the proper conditions are met.  The resulting plasmon can then retransmit its energy as 

light at a specific frequency or band of frequencies, producing a tell-tale signal in its emitting 

spectrum. Surface plasmons are extremely sensitive to changes of the index of refraction at the 
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interfaces and so can be used as biosensors in the direct detection of biomolecules as they associate 

or dissociate on the surface of the detector8.  

1.4 Photo-induced movement in azobenzene materials 

Azobenzene is a chemical compound made of two phenyl rings attached by a nitrogen 

double bond.  They can be considered as a derivative of diazene, a class of molecules which are 

strong absorbers of light and often used as dyes in industrial applications9.  Azobenzene molecules 

exhibit an interesting property called photo-isomerization. The molecule will change from its trans 

configuration to its cis isomer, and back again, when it is exposed to an absorbed frequency of light 

as illustrated in Figure 1.4.  Azobenzene can be added as a chromophore to other materials such as 

polymers or glass forming materials and it will still retain its photo-isomerization properties.  A 

fascinating result of the photo-isomerization of azobenzene in polymers is the photo-induced mass 

transport of the molecules.  This was discovered in 1995 through the formation of Surface Relief 

Gratings (SRGs) in thin films of azopolymer by the Natansohn/Rochon10 and Tripathy/Kumar11 

research teams. When an interference pattern of alternating dark and light fringes is projected with 

sufficient power and the correct wavelength onto a thin film of azobenzene functionalized material, 

the material will move away from the light towards the dark areas, effectively recording the 

interference pattern in surface-relief on the film.  This method has proven to be an extremely 

simple single-step process to manufacture quality SRGs on a micro and nanometer scale.  Although 

the physics behind the mass flow properties are not completely understood, one noteworthy feature 

that must be included in the development of theories of photo-induced transport in azo-materials is 

that it is dependent on the polarization of the incoming light.  Experiments have shown that a 

combination of light intensity as well as variations in the electric field with a component along the 

grating vector direction is required to produce deep SRGs in azo-materials12.  
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Figure 1.4 – In the proper conditions, azobenzene molecules change from one molecular isomer to another and 
back again when exposed to light in an effect called photo-isomerization.c 

The synthesis of molecular glass has several advantages over polymers including higher 

yields and easier purification.  Although they are not the first to synthesize azobenzene derivatives 

capable of forming glassy phases, a joint group from the Royal Military College of Canada and 

Queen’s University has recently demonstrated a new azo-glass compound13.  This material 

possesses the added benefits of a single step synthesis process.  It has been shown that this azo-

glass material is able to produce high quality photo-induced SRGs on a thin film with less than 

50mW/cm2 of irradiance from the inscribing source of light13.  This azo-glass is the sample material 

that is used to create surface relief gratings in the experimentation section of this thesis.   

1.5 Goal of Research 

The goal of this thesis is to introduce a novel method of inscribing circular SRGs onto azo-

glass films using a three-dimensional (3D) beam splitting technique with a fixture called a Circular 

Diffraction Grating Generator (CDG).  The CDG’s mirrored surface simultaneously acts to split 

and redirect a beam of coherent light to form interference fringes in the pattern of concentric 

circles.  When a thin film of azo-glass material is placed at the small aperture of the CDG, the 

circular interference pattern is recorded in surface-relief on the film.  This thesis will develop the 

theory required to relate the pitch of circular gratings generated to the geometry of the CDG when 

using a planar wave front as an inscribing source.  In addition, this thesis will investigate the 
                                                        
c  "Azobenzene isomerization". Licensed under Public domain via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File:Azobenzene_isomerization.png#mediaviewer/File:Azobenzene_isomerization.png 
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resulting pitches of circular SRGs produced by a CDG when the wave front of the light source is 

spherically divergent or convergent.    

1.6 Thesis Structure 

This thesis is divided into 6 chapters.  Chapter 1 will serve as an introduction to some of 

the basic concepts and vocabulary required to understand the research.  Following an introduction 

to diffraction gratings, including some necessary definitions, there is a short history on the early 

discoveries in the field of diffraction optics.  Next, there is a short description of some modern 

applications of diffraction gratings.  It concludes with a brief discussion detailing the goal of 

research and an outline of the thesis structure. 

Chapter 2 is a literature review to determine current manufacturing techniques and possible 

applications for circular SRGs.   

Chapter 3 will cover the derivation of the required theory.  It will start with some basic 

concepts introducing light as an electromagnetic wave and the interference of light.  It will review 

some theory on far-field diffraction as well as the derivation of the grating equations.  It will then 

provide a detailed geometric analysis of the interference patterns created by a CDG for both planar 

(collimated) as well as curved (divergent and convergent) sources of light.  The last section in 

chapter 3 will go into some detail of the theory behind the critical height of the CDG and how it 

plays a role in the formation of circular or ring gratings.   

Chapter 4 outlines the experimental procedures used to verify the theory.  It will cover the 

details on how sample thin films of azo-glass material and the CDG fixtures themselves are 

produced.  Next, it will explain the experimental set-up for producing circular SRGs with a 

collimated beam.  Lastly, it will show the experimental set-up for producing circular SRGs with a 

curved wave front.   

Chapter 5 will provide the results from the experiments outlined in Chapter 4 and will 

compare them with the theory from Chapter 3.   
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Chapter 6 will discuss the implications of the work and will summarize the conclusions of 

this thesis.    
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CHAPTER 2: LITERATURE REVIEW 

2.1 Manufacturing techniques for diffraction gratings.   

SRGs can be produced by a variety of methods.  Gratings can be mechanically cut into a 

polished surface with a diamond tipped ruling engine.  Early versions of this type of machine used 

very precise gearing mechanisms to control the spacing between each grating line.  Modern ruling 

engines are now computer controlled and can employ piezoelectric actuators combined with high 

precision feedback control systems to further increase the accuracy of the grating profile to under 4 

nm with the theoretical capability of inscribing gratings with pitches as small as 6000 lines per 

millimetre or a grating pitch of about 170 nm14.  These types of ruling engines are one of the best 

manufacturing methods for creating master copies of large scale gratings.  However, the ruling 

engines are very expensive pieces of equipment and can take days to inscribe a grating since each 

groove is cut one at a time.  As an example, a 500 mm by 400 mm grating can take more than 720 

hours of continuous operation of a ruling engine to create14.   

Other methods of direct grating patterning are the result of high precision computer aided 

nano-manufacturing techniques such as electron beam lithography15, focused ion beams16 or laser 

milling17. These methods can be time consuming for large grating areas since, similar to ruling 

engines, each line is milled individually making for relatively slow production speed. Depending 

on the power of the machine and the depth of grating required, the manufacturing time can be 

substantially slower than a ruling engine.  For example, creating a grating with 1700 lines per 

millimetre (approximately 600nm pitch) on a 4 cm2 area would take 6800 hours with a writing 

speed of 10 cm/hr as one paper reports15.  Although these methods can be used to create very high 

quality gratings with nano-scale resolutions, they too require expensive specialized equipment.    

Photolithography is widely used in the industry and involves using a photo-mask to expose 

a pattern onto a light sensitive material called a photo-resist.  The photo-resist is chemically altered 

by the light, but only in the areas not blocked by the photo-mask.  The surface can then be 
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chemically treated to etch away or deposit material in the pattern that was photo-exposed onto the 

surface.   The shapes and complexity of the pattern that can be created this way are limited only by 

the level of detail of the photo-mask and the resolution of the projection system.  An alternative 

method of photolithography uses an interference pattern from two or more coherent sources of light 

to directly expose the photo-resist without the use of a photo-mask.  This method of fabrication is 

called interference photolithography and results in what’s called a holographic grating.  

Holographic gratings are widely used in the field of optics and can be made with profile shapes that 

are approximately sinusoidal and have been shown to reduce optical aberrations that are normally 

present in ruled gratings18.  Continued refinements in interference lithography methods have 

realized patterning resolutions of below 10 nm using extreme ultraviolet light wavelengths19.   

Photolithography is convenient for creating large and complex gratings quickly since the entire 

pattern is exposed simultaneously rather than written one line at a time.  However, it is a complex 

multi-stage process which normally requires the production of the photo mask, exposure through a 

specialized projection system, chemical development of the photoresist, as well as etching and 

cleaning steps.   

Nano-imprinting involves production of a mold, sometimes from a method listed above, which is then 

pressed into a polymer surface.  Soft lithography is a type of nano-imprinting that uses a flexible mold to 

transfer a surface-relief pattern, such as a diffraction grating or Fresnel lens, onto a desired substrate20.  

The mold pattern can be modified prior to stamping through mechanical bending, compression or 

stretching21 adding some additional versatility to this production method.  Although nano-imprinting 

works well for mass production of gratings based on a master mold, it is also a multiple step process that 

is ill suited for rapid development of new prototype grating patterns.  

A relatively new micro-fabrication technique called Direct Laser Interference Patterning utilizes two or 

more interfering beams of light to directly engrave microstructure surface patterns on commercially 

available polymers through laser ablation of the material22.  Recent publications report grating pitches as 

small as 125 nm are possible using this technique23.  This method has the benefits of traditional 
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interference photolithography without the additional developing, etching and cleaning steps.  However the 

ablation process used to form the material requires a high-powered pulsed laser.   

2.2 Manufacturing of surface relief gratings in Azo-functionalized materials 

Linear holographic SRGs fabricated using interference patterns projected onto azo-polymer films have 

been widely reproduced and studied since their discovery in 199510.  There are two main methods of 

manufacturing linear gratings in this method.   

The first method involves splitting a laser beam with a beam splitter and then using mirrors 

to redirect the two beams in order to expose the sample of azo-material with laser light from at two 

different angles. The interference pattern of light caused by the angle between the beams can be 

inscribed directly on a film azo-material.  This method is similar to the standard method of 

producing holographs and is therefore susceptible to vibration.  Each optical element in the system 

must be extremely stable since any small movements, even at scales smaller than the wavelength of 

light, can affect the quality of the interference pattern by changing the phase position of the 

interfering light.   

The second common method of fabricating linear SRGs in azo-films uses a Lloyd mirror as 

seen in Figure 2.1.  A Lloyd mirror consists of a mirror that is held at a 90 degree angle to the 

sample.  One half of the incident beam of light is reflected by the mirror while the other half strikes 

the sample directly.  This creates an interference pattern of alternating light and dark fringes.  The 

spacing of the fringes can be manipulated by rotating the entire fixture (sample and mirror) with 

respect to the angle of the incident beam.  The main advantage to this method is that since the 

Lloyd mirror serves to split and redirect the incoming light in a single optical element, it is much 

less susceptible to vibration.   

 



14 
 

 

Figure 2.1 – Schematic of a Lloyd mirror set-up for inscribing linear SRGs in an azo-material sample. d 

There is an excellent recent review article summarizing methods and applications of surface patterning on 

azo-polymers by Priimagi and Shevchenko24.  The main advantage to producing diffraction gratings in 

this method is that it is a single step process that can produce large-scale gratings quickly without the 

requirement for a master photo-mask or mold.  Grating spacing can be customized by changing the angle 

of the interfering beams or using different wavelengths of light24.  However, a literature review on the 

subject has only turned up two other of publications reporting the fabrication of circular SRGs using azo-

functionalized materials. These methods include the formation of circular diffraction gratings using 

Bessel beams25 and fiber optic modes26.   These techniques are somewhat similar in concept to the 

technique of using a CDG, in that they are using circular patterns of light to directly inscribe circular 

SRGs.  However, the scale of the circular SRGs that have been produced by this method is in 

micrometers.  The main advantage of the use of the CDG to generate circular gratings is the fact that it 

can create fairly large gratings on the order of 1 cm diameter in a single step process without a master 

grating pattern.  It will be seen that the ability to make changes to the geometry of the CDG and the 

optical elements also adds an element of controllability to the size, grating pitch, and degree of chirp of 

                                                        
d Image from Brigham Young University website, http://www.photonics.byu.edu/holography.phtml   
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the resulting circular SRG.  This means that circular SRGs made to meet specific requirements can be 

quickly and easily fabricated using this new holographic method.    

2.3 Applications for Circular Diffraction Gratings 

As discussed in Section 1.3, linear diffraction gratings have a wide range of applications in modern 

technology.  Circular diffraction gratings share similar properties as their linear counterparts, but because 

of their circular symmetry around an optical axis, they can be used in a variety of two-dimensional and 

on-axis applications.  For example, circular diffraction gratings can be employed in the design of a wide 

variety of diffractive optical elements, such as diffractive or kinoform lenses27, specialized diffractive 

lensacons28 and hybrid lenses29.  Optical sensors can sometimes benefit from the two-dimensional 

geometry of circular gratings to reduce the directional dependence of the gratings while enhancing 

sensitivity by using surface plasmons.  This has been reported in applications such as infrared 

photodetectors30 and plasmon enhanced biosensors31.   An added benefit of the nano-manufacturing 

technology employed to make these gratings is that it can be used for the miniaturization of optical 

sensors and instruments.  Micro-spectroscopes32 and angular rotation sensors33 have been shown to be 

technically feasible by using circular diffraction gratings with diameters less than 1mm across. 

Another possible application for circular SRGs includes surface emitting distributed feedback lasers.  A 

properly designed circular grating can act as a laser resonance cavity when pumped from an external 

optical source.  This type of device has been reported as being produced by a variety of manufacturing 

techniques in chirped34 and non-chirped configurations35.  These tiny surface-emitting lasers can be 

manufactured at low costs and can be used as a coherent light source for a lab-on-a-chip or other 

miniaturized optical sensor applications.   

An area of interesting research is the use of grating structures to create surface plasmon resonance to 

enhance the efficiency in light emitting diodes (LED) and solar cells.  LED efficiencies and peak intensity 

outputs have been shown to increase through the use of a patterned metal surface capable of coupling 

surface plasmon modes36.  The problem with extracting light is that the metal film attenuates its intensity 
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through reflection and absorption.  Grating structures have been shown to increase the photoluminosity 

intensity up to 46 times by increasing the light extraction efficiency and photon trapping in surface 

plasmon enhanced LEDs37.  In a somewhat similar area of research, grating structures are being 

investigated as a tool to induce surface plasmons  as well as couple waveguide modes into thin solar cell 

materials.  In this case, the goal is to trap more light, instead of extracting it as in the case with the LEDs.  

By incorporating repetitive circular nano structures into the fabrication of solar cells, it has been shown 

that an increase in the absorption of light by 7% is possible in thin film amorphous silicon solar cells38.  

Another paper reports a 43% increase in short circuit current for thin film silicon solar cells using a 

grating structure as compared to similar cells without these nano structures39.   

Another interesting application is the use of circular gratings as a photo-computation component.  There 

is ongoing research to create a neural network architecture using two dimensional beam arrays of light.  

By interconnecting the beams of light in the beam array and by controlling the weight of these 

connections, it is possible to perform computations using light.  One paper reports the use of binary 

Fresnel zone plates with a radius of 1.2 mm as diffractive optical elements for the generation of these 

beam arrays to create a photo-refractive neural network40.   

For all of the applications above, high quality circular diffraction gratings are required.  It 

is possible that some of these types of research may be able to benefit from a way to produce 

holographic circular diffraction gratings. 
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CHAPTER 3: THEORY 

3.1 Light as an electromagnetic wave 

Light has been an object of great interest to humans since our earliest times.  Astronomers and 

philosophers have been observing and trying to explain it for thousands of years.  Under the scrutiny of 

some the greatest scientific minds, the past several centuries have yielded a tremendous advance in our 

understanding of the nature of light.  We now know that light is a transverse wave that is able to 

propagate through certain materials and empty space through a series of alternating electric and magnetic 

fields.  The accepted model that is currently used to describe the physics of an electromagnetic (EM) 

wave is the famous set of laws that make Maxwell’s equations.  An excellent summary of the theory of 

EM radiation can be found in the text book “Optics” by Hecht41 and many of the formulas in this section 

were taken from chapter 3 of that book.  Maxwell’s equations can be used to describe the properties of the 

EM interactions in any material and are given as: 
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E
r

and B
r

are the electric and magnetic vector fields.  The electric permittivity ε and 

magnetic permeability µ are physical constants when in free space denoted by 0ε  and 0µ .  The 

variable ρ is the charge density and J
r

is the current density vector field.  Equation (3.1.1) is known 

as Gauss’s law for electric fields and describes how the total electric field flux over a closed area is 

related to the total amount of electric charge inside the volume of that same closed area.  Equation 

(3.1.2) is called Gauss’s Law for magnetic fields and is similar to equation (3.1.1) except since a 
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magnetic monopole does not exist, it is impossible to have a point source or sink for a magnetic 

field.  Therefore, the magnetic flux over a closed area will always be zero.  Equation (3.1.3) is 

Faraday’s Law which describes, more generally, how a time varying magnetic field can induce an 

electric field in a closed loop, thus generating electricity in a metal coil.  Equation (3.1.4) is 

Ampere’s Law and describes in general terms how either a current or changing electric field can 

induce a magnetic field. Arguably, Maxwell’s greatest contribution was recognizing that a flowing 

current was not necessarily required to create a magnetic field, but that any time varying electric 

field can induce a magnetic field.  This realization allowed Maxwell to write his equations for free 

space, where there is no charge density or electric current density and where the permittivity and 

permeability are constants: 
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Remarkably, even though there are no electric charges, electrical currents, or any conductive materials in 

space, an EM wave can still form and propagate based on the interdependence of equations (3.1.7) and 

(3.1.8).  It has been shown in appendix 1 of the text book by Hecht41 that these two equations can be 

manipulated into their vector form: 
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These equations are well known forms of partial differential wave equations that describe a 

sinusoidal wave that propagates through time and space.  According to wave theory the velocity of 

such a wave would be: 

0 01/v ε µ=    (3.1.11) 

From Coulomb’s law, which relates the force that is exerted between two charged particles, 

the value of the permittivity in free space can be determined experimentally as 

12 2 2 3 1
0 8.85 10 s C m kgε − − −≈ × .  Because of the somewhat arbitrary selection of units for charge, time 

and distance, the permeability of free space is set as 7 2
0 4 10 m kg Cµ π − −= × ⋅ ⋅ to ensure the correct 

conversion between units of force and current from Ampere’s force law, which relates the force 

acting on two wires with a certain current.   

The result of 18 2 2
0 0 1.12 10 s mε µ − −≈ × can then be used with equation (3.1.11) to determine 

a velocity of approximately 8 13 10 ms−× . This agrees very well with the measured speed of light in 

free space and offers convincing evidence that light is indeed comprised of electromagnetic waves.   

It is sometimes convenient, knowing that both the electric and magnetic waves propagate 

together, to choose only one of these waves in order to simplify the expression of an EM wave.  In 

practice, if the magnitude and direction of one is known at a given point in time and space, the 

same properties can be found for the other.  One convention is to describe only the electric field E
r

when working with light.  This convention will be followed for the remainder of this thesis.   

A complex number representation can be used to describe the amplitude of the electric 

field over time and space: 

( )
0( , ) Re i k r tE r t E e ω ϕ⋅ − +⎡ ⎤= ⎣ ⎦

v vv vv    (3.1.12) 

or equivalently: 

0( , ) cos( )E r t E k r tω ϕ= ⋅ − +
vv vv v   (3.1.13) 
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where 0E
v

 is the directional amplitude of the electric field, ω is the angular frequency 2ω πν=

where ν is the frequency of light, and t is time. Additionally, k
v

is the wave vector in the direction 

the wave is travelling and whose magnitude is 2 /k π λ=
v

.  Also,λ is the wavelength of light, and 

rv is the position vector.  Lastly, ϕ  describes the phase position of the wave in radians.   

The next simplification that will be made to our theory describing the propagation of 

electromagnetic waves is removing the time dependence.  Imagine taking a snap shot of a waves 

moving in a swimming pool.  The wave can still be described in terms of values for k and r, 

however by making t a constant at some arbitrary point in time, the term ωt becomes a constant.  

The constants ωt can be combined into the phase constant ϕ  to describe phase position in space at 

that frozen point in time.  The same concept can be applied to an electromagnetic field giving the 

result: 

 

0( ) cos( )E r E k r ϕ= ⋅ +
uv v uv v v

   (3.1.14) 

Since the light beams that will be used in our experiment come from a single coherent 

source, meaning the phase of the light will not change as it travels, the assumption can be made that 

the interference pattern from the time independent waves will also not depend on the intial phase 

variable ϕ  from the source.  This assumption is possible because any initial phase value at the 

source of light will cancel out when calculating the phase difference between the two beams where 

they meet at their interference point.  The phase difference between the beams is calculated by 

subtracting path lengths 1r
v and 2r

v , thereby eliminating the initial phase term from the common 

source.  The result is the analysis of the interference of electromagnetic waves has been greatly 

simplified such that the only factors that need be considered are the path length rv  that the light 

beam travels and the wavelength of light from the equation 2 /k π λ=
v

.  Using the path length and 
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wavelength of light rays to calculate the phase difference for interfering light is the basis for the 

geometric ray trace analysis that will be used in sections 3.5 and 3.6 

3.2 Interference of light 

Like most other forms of waves, EM waves follow the principle of superposition.  This 

principle states that when two or more waves occupy the same location at the same time, the 

resulting wave will be equal to the sum of all the waves.  Figure 3.1 represents two waves 

interfering with each other and the resultant superposition wave in red.  For areas where the 

amplitudes of the interfering waves are both on the same side of the x axis, they will interfere 

constructively and the resulting superposition wave will be amplified.  For areas where the 

amplitudes of the interfering waves are on opposite sides of the x axis, they will form destructive 

interference and they will partially or completely cancel each other out, reducing the amplitude of 

the resulting superposition wave.  This principle of superposition is a very important concept since 

it explains many phenomena relating to light including diffraction.   
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Figure 3.1 – A graph representing the superposition of waves. Two waves with different frequencies in green and 
blue travel along the x axis and the resultant superposition wave is shown in red.   

3.3 Diffraction of light 

 According to the Huygens-Fresnel principle, any disturbance to a beam of light can be 

mathematically described as an infinite number of point sources along the wave front of the beam. 

The superposition of the waves emitted from all of these point sources is an effective way to model 

the bending and interference effects of light that occur at the edges of an interface, known as 

diffraction.  Figure 3.2 shows a plane wave striking a slit. The wave front can be approximated as a 

number of point sources represented by the yellow dots.  It can be seen that resulting wave front 

from the superposition of the point sources will continue on the same path in the middle of the slit, 

but will curve outward at the edges of the slit.  An additional implication of this model, that is 

perhaps less obvious in Figure 3.2, is that a fringe pattern of alternating maxima and minima is 

created from the interference of the multiple point sources.  Both the bending of light around the 

edges of an interface and the resulting interference pattern are exactly what is observed in nature as 

diffraction.   
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Figure 3.2 – Diffraction of a wave through a slit.  The dots represent the conceptual point sources of light used by 
the Huygens-Fresnel principlee 

 

A simple example of diffraction in everyday life can be seen in the shadow cast by an 

object.  Any object blocking light can act as an interface and becomes a source of diffraction.  

Because the angle of diffraction is dependent on wavelength (this will be shown in the section 3.4), 

it is most noticeable when it comes from a coherent source, or a source that emits a single 

frequency of light.  It is not easy to see diffraction patterns at the edges of the shadow of your hand 

in daylight because the different colours that make up white light all diffract at different angles 

making a clear pattern hard to discern.  However, with a bright and coherent light source, it is 

possible to see interference patterns of alternating light and dark fringes at the edges of any shadow 

as a result of diffraction.  An example of this phenomenon can be seen around the edges of a razor 

blade in Figure 3.3.   

                                                        
e  By Arne Nordmann (norro) - Licensed under Public domain via Wikimedia Commons - 
http://commons.wikimedia.org/wiki/File%3ARefraction_on_an_aperture_-_Huygens-Fresnel_principle.svg  
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Figure 3.3 – The interference pattern in the shadow of this razor blade is caused by diffraction at the edges of the 
bladef.    

3.4 Diffraction gratings and the grating equation 

 As mentioned in section 1.1, a diffraction grating is a periodic modulation in a material 

that affects the properties of light.  In order to better understand how a diffraction grating works, it 

is best to start with the simplest example, a transmission amplitude grating.  In this example, we 

will assume that an array of thin slits with a space between them of d will act as an array of point 

sources as depicted in Figure 3.4.   

                                                        
f Image from Scientific America Blog: “X-Ray Crystallography: 100 Years at the Intersection of Physics, Chemistry, 
and Biology”, http://blogs.scientificamerican.com/scicurious-brain/files/2012/12/diffraction-razor-blade.png.   
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Figure 3.4 – Schematic of the geometry used to theoretically describe the far-field interference pattern from an 
array of coherent point sources.g 

If the grating is illuminated (from the left of the diagram) with a normally incident 

collimated beam (that is to say a beam with a perfectly planar wave front), then the point sources 

will be emitting light that is perfectly in phase.  If the collimated beam has an even power 

distribution over its entire wave front, then each point source will each emit an electric field that is 

equal and that will have an amplitude approximately equal to the value E0 when it arrives at point 

P.   Each point source, starting from the top of the diagram, is numbered with an integer n = 1, 2, 3, 

… , N where N is the total number of point sources in the array.  The value rn is the distance from 

each respective emitter to a distant point P.  The resulting electric field amplitude, E, at point P will 

be equal to the total contribution of these emitters using equation (3.1.12) and can be written as: 

 1 2 ( )( ) ( )
0 0 0... Ni kr ti kr t i kr tE E e E e E e ωω ω −− −= + + +   (3.3.1) 

By taking out a common factor it can be further manipulated to show: 

 3 1 11 2 1 ( ) ( )( )
0 1 ... Nik r r ik r rikr ik r ri tE E e e e e eω − −−− ⎡ ⎤= × + + + +⎣ ⎦   (3.3.2) 

                                                        
g Image from pg 450 of Hecht41 

P 



26 
 

The slits initially all have the same phase, but because the path lengths rn are all different 

this will introduce a phase difference between the rays arriving at point P.  This phase difference φ  

can be defined in terms of the difference in distance between two rays multiplied by k: 

 2 1( )k r rφ = −       (3.3.3) 

  From Figure 3.4, we see from similar triangles that the phase difference between two rays 

can be written more generally as 1( 1) ( )nn k r rφ− = − . Substituting this equation into equation (3.3.2) 

gives: 

 1 2 1
0 1 ( ) ... ( )ikri t i i i NE E e e e e eω φ φ φ− −⎡ ⎤= × + + + +⎣ ⎦   (3.3.4) 

The geometric series in the square brackets in equation (3.3.4) is known to equal: 

( ) ( )2 11 ( ) ... ( ) 1 / 1i i i N i N ie e e e eφ φ φ φ φ−⎡ ⎤+ + + + = − −⎣ ⎦   (3.3.5)  

 Taking out a common factor of /2 /2/iN ie eφ φ gives: 
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−
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 (3.3.6) 

Using the trigonometric identity ( )sin / 2ia iaa e e i−= −  and simplifying further gives: 

 2 1 ( 1) /2 sin / 21 ( ) ... ( )
sin / 2

i i i N i N Ne e e eφ φ φ φ φ
φ

− − ⎛ ⎞⎡ ⎤+ + + + = ⎜ ⎟⎣ ⎦ ⎝ ⎠
  (3.3.7) 

Substituting equation (3.3.7) into equation (3.3.4) gives: 

 [ ]1 ( 1) /2
0

sin / 2
sin / 2

i kr Ni t NE E e e φω φ
φ

+ −− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

   (3.3.8) 

By changing the geometry of the problem by defining R as the distance from the centre of 

the array to the point P in question we see that: 

 2 1 1
1 ( 1)( )
2

R N r r r= − − +      (3.3.9) 

By substituting equation (3.3.3) into equation (3.3.9) we get: 

 1
1 ( 1)
2

R N r
k
φ= − +      (3.3.10) 
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And by rearranging we get: 

 1
1 ( 1)
2

kR N krφ= − +      (3.3.11) 

Subtituting this equation into equation (3.3.8) gives: 

 ( )
0

sin / 2
sin / 2

i kR t NE E e ω φ
φ

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (3.3.12) 

Irradiance is the measurement of the average energy over an area over a unit of time.  It can 

be defined as a relation to the electric field in an EM wave by the expression:  

 
*

2
E EI ⋅∝       (3.3.13) 

where E* is the complex conjugate of the value E. 

By using equation (3.3.13) with equation (3.3.12) and combining all of the constant 

variables into a single constant 0I we get: 
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sin ( / 2)

NI I φ
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=      (3.3.14) 

where 0I is the irradiance from a single point source at point P.  From Figure 3.4, we can see that 

the phase difference between any two consecutive emitters can be expressed as k times the 

difference in distance between two rays.  This can be expressed in terms of the angle θ  as: 

 sinkdφ θ=       (3.3.15) 

Substituting equation (3.3.15) into equation (3.3.14) gives our final result of irradiance as a 

function of angle θ: 
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     (3.3.16) 

This equation tells us that if N is larger than 1, then the top half of the expression will 

modulate between light and dark fringes more often than the bottom half of the expression.  Figure 

3.5 is an example graph of equation (3.3.16) for N=10.  The three tall peeks represent the 
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diffraction orders 0, 1, and -1 and are the result of the slower modulation from the bottom portion 

of the equation.  The faster modulated smaller peeks are a result from the top half of the equation. 

For larger values of N, the number and frequency of these peeks becomes so large that they are 

nearly impossible to resolve spatially and so the principal diffraction order maxima remain the 

primary features of the diffraction pattern.   

 

Figure 3.5 – Graph of irradiance versus diffraction angle from equation (3.3.16) with N=10, I0=1 Wm-2, λ=532nm 
and d=750nm.   

 

In order to find the principal maxima we must set the bottom half of the expression from 

equation (3.3.16) to zero.   

 20 sin sin
2
kd θ⎛ ⎞= ⎜ ⎟⎝ ⎠

     (3.3.17) 

Therefore the value inside the brackets of equation (3.3.17) must be equal to: 

 sin
2
kdmπ θ=  

 2 sin mm kdπ θ=      (3.3.18) 
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where 0, 1, 2,...m = ± ± serves as an integer multiplier, and indicates the order of the diffraction 

maximum as previously defined.   

This result makes intuitive sense since going back to equation (3.3.15), we know that the 

phase difference φ  between two consecutive rays at a certain angle θm must be some multiple of 2π 

for fully constructive interference to occur.  From the similar triangles in Figure 3.4, we know that 

all of the emitters will have fully constructive interference at this angle because their phase 

differences will likewise be multiples of 2π .   

The final result, by substituting the definition of 2 /k π λ=  into equation (3.3.18), is: 

sin mm dλ θ=      (3.3.19) 

This equation is known as the grating equation for normal incidence.  An approximation was 

cleverly included into Figure 3.4 such that all of the rays r1 to rN are approximately parallel to each 

other.  This occurs when the distance from the grating to the screen, r, is much larger than the 

distance d between point sources.  This is known as the far field or Fraunhofer approximation. 

As its name implies, the grating equation for normal incidence only applies when the 

incident light is normal to the grating.  If the angle of incidence were to change, the point source 

emitters in Figure 3.4 would no longer emit perfectly in phase because of the different path lengths 

from the source.  This would be equivalent to adding some new phase shift ψ between each 

consecutive emitter.  From equation (3.3.15) this gives: 

sinkdφ θ ψ= ±      (3.3.20) 

The plus or minus sign signifies that phase shift could be added or subtracted depending on 

which quadrant the angle of incidence is in.  The value of ψ from the off-normal incident light can 

be easily described by using Figure 3.4 with the direction of light reversed.  In this case: 

sin ikdψ θ=      (3.3.21) 
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where iθ  is the angle of incidence.  Substituting equation (3.3.21) into equation (3.3.20) and 

solving to find the principle maxima of equation (3.3.14) similar to what was done for the case of 

normal incidence yields the result: 

 sin sinm id m dθ λ θ= ±   

 (sin sin )m id mθ θ λ± =      (3.3.22) 

This is a more general solution to the grating equation that works for any angle of 

incidence.   

Although our grating equations were derived using an array of point source emitters, it can 

be similarly derived and applied to many different types of diffraction gratings under the same far 

field approximation.  In the case for gratings that are not an array of point sources the periodic 

distance between emitters d, is equivalent to the grating pitch Λ.    

As mentioned in the introduction section, one advantage of a phase grating over an 

amplitude grating is that none of the incident light is blocked in a phase grating.  This results in a 

large increase in the grating’s diffraction efficiency.  The derivation of the grating equation for a 

sinusoidal phase grating is more complicated than the simple example shown here.  However, for a 

square wave phase grating, it is relatively easy to conceptualize that by changing the phase of light 

by 180 degrees in zones where destructive interference would normally occur (areas that would be 

blocked by a amplitude grating), you would actually be creating additional zones of constructive 

interference.  Therefore, the square wave phase grating is equivalent to doubling the number of 

constructive source emitters compared to a similar amplitude grating.  Because irradiance is related 

to the electric field times its complex conjugate the result effectively quadruples the irradiance of a 

square phase grating compared to a binary amplitude grating.  This example illustrates why phase 

gratings are so much more efficient than their amplitude grating counterparts.   
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3.5 Analysis of the fabrication of constant pitch circular gratings using a planar wave front 

 Assume a mirror in the shape of a hollow truncated cone.  The inner surface of this shape 

is reflective and is the basis for a theoretical CDG.  When a collimated laser beam with a diameter 

sufficiently large to illuminate the entire reflective surface is incident perpendicular to the sample, 

the CDG will reflect the light towards the smaller aperture end, creating an interference pattern 

where it interferes with the directly incident light.  Figure 3.6 shows a schematic of the cross 

section of a planar wave front incident onto a CDG where θ is the angle between the mirrored 

surface and the normal.  

 

Figure 3.6 – Schematic showing the geometry of a CDG with a mirror angle θ when it is exposed to a planar wave 
front 

 

At points A and B, the collimated wave front will be in phase.  Using the law of sines with 

triangle ACD, it can be seen that: 
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Giving: 

 cotAC DC θ=       (3.4.1) 
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 cos2BC AC θ=       (3.4.2) 

Substituting equations (3.4.1) and (3.4.2) to find the difference in path length PD is: 

 cot cos2PD AC BC DC ACθ θ= − = −    (3.4.3) 

Substituting equation (3.4.1), into equation (3.4.3) gives: 

 cot cot cos2PD AC BC DC DCθ θ θ= − = −  

 cot (1 cos2 )PD AC BC DC θ θ= − = −    (3.4.4) 

And from the trigonometric identity, 2cos2 1 2sinθ θ= − we get: 

 2cot (1 [1 2sin ])PD AC BC DC θ θ= − = − −   

 
22sin

tan
DCPD AC BC θ

θ
= − =   

 2sin cosPD AC BC DC θ θ= − =     (3.4.5) 

From the trigonometric identity sin 2 2sin cosθ θ θ=  we get: 

 sin 2AC BC DCPD θ− ==     (3.4.6) 

The phase difference φ between the two paths is related to the path length difference by the 

expression: 

 ( )k PDφ = +Δ       (3.4.7) 

where k  is the wavenumber for the light source 2 /k π λ= , and the additional term of Δ  is the 

phase change on path AC from a single reflection on the CDG mirror.  In order to find the grating 

pitch Λ or the distance between each maxima, we need to find the distance between two separate, 

but very close points on the sample where the change in the phase difference φΔ  between 

interfering paths will be 2π .  This can be written as: 

 2 1 2φ φ φ πΔ = − =      (3.4.8) 

Substituting equation (3.4.7) into equation (3.4.8) gives: 

 ( ) ( )2 12 k PD PDφ πΔ = = ⎡ +Δ − +Δ ⎤⎣ ⎦    (3.4.9) 

By substituting the definition of k and equation (3.4.6) into (3.4.9) we get: 
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 2 1
22 ( sin 2 sin 2 )DC DCππ θ θ
λ

= −    (3.4.10) 

Since we know the distance between DC2 and DC1 will be equal to the pitch of the grating 

given the condition from equation (3.4.10) is met, therefore we can write: 

 2 1 csc2DC DC λ θΛ = − =     (3.4.11) 

This equation is our final result and relates the pitch of the circular grating generated to the 

angle of the CDG θ, and wavelength of light λ, when using a collimated source.  It also 

demonstrates a practical limit to the smallest grating pitch that can be generated which is dependent 

on the wavelength of the light source and is limited to λΛ ≈ as θ approaches 45 degrees.  At 

CDG angles greater or equal than 45 degrees, the reflected light will never reach the sample surface 

and no interference pattern will be generated.   

3.6 Analysis of the fabrication of chirped pitch circular gratings using curved wave fronts 

 Taking the same theoretical conical CDG mirror as in the last section, we now investigate 

the result of a point source of coherent light placed at a distance s from the center of the fixture 

along the axis of symmetry. The CDG will again reflect the light towards the smaller aperture end, 

creating an interference pattern with the directly incident light, but because of the curvature of the 

wave front, the mathematics becomes more complicated.  Figure 3.7 shows a schematic of the point 

source located at point A and its corresponding reflected image source at point I due to the CDG 

mirror. 
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Figure 3.7 – Schematic for the geometry of a divergent point source used with a CDG to create chirped circular 
gratings 

Using Cartesian co-ordinates, from diagram the Point P is located at: 

 ( cos , sin )l s lθ θ−      (3.5.1) 

Because the Image Source at point I will be twice the distance from A as the point P: 

 ( , ) (2 cos , 2 sin )X Y l s lθ θ= −     (3.5.2) 

In order to find the distance l, from triangle CZP we take: 

costan
sin

l m
s l

θθ
θ

−=
−

 

which can be further manipulated to show that: 

 sin cosl s mθ θ= +      (3.5.3) 

Substituting this value of l into (3.5.2) and reducing (using common double angle and half 

angle trigonometric identities) gives: 

( , ) (2( sin cos )cos , 2( sin cos )sin )X Y s m s s mθ θ θ θ θ θ= + − +  

2 2( , ) (2 sin cos 2 cos , 2 sin 2 cos sin )X Y s m s s mθ θ θ θ θ θ= + − +  

( , ) ( cos(2 ) sin(2 ), cos(2 ) sin(2 ))X Y m m s s mθ θ θ θ= + + −   (3.5.4) 
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Now that we have the locations of point A and point I in terms of the parameters θ, m, and 

s, we can use their locations to calculate the difference in their effective optical path lengths to a 

given point (0, δ).  Again we define the path length difference as 2 1PD ρ ρ= − . 

Given from Figure 3.7 that, 

 2 2
1 sρ δ= +       (3.5.5) 

 2 2
2 ( )X Yρ δ= − +      (3.5.6)  

We can expand our definition of PD and substitute in equation (3.5.4) to get: 

2 2 2 2 2 22 sin(2 ) 2 sin(2 ) 2 cos(2 ) 2 2 cos(2 ) 2PD sm s s m m m m sθ δ θ θ δ θ δ δ δ= − + + + − − + − +  (3.5.7) 

Similar to the last section, the phase difference between the two paths is related to the path 

length difference and is given by: 

 2( ) ( )k PD PDπφ
λ

= + Δ = + Δ     (3.5.8) 

Again, the extra term Δ is due to the single reflection which takes place on the 2ρ optical 

path.  In the same manner as before, if we set the change in phase difference φΔ  between two 

different points 1δ and 2δ to be equal to 2π , this gives us: 

( ) ( )2 2 1 1
22 ( ) ( )PD PDπφ π δ δ
λ

Δ = = ⎡ + Δ − + Δ ⎤⎣ ⎦  

 [ ]2 2 1 1
11 ( ) ( )PD PDδ δ
λ

= −     (3.5.9) 

Here we are using function notation for the path length difference PD to show its 

dependence on the parameter δ as seen in equation (3.5.7).  The other variables that the path 

difference depends on: m, s, and θ are effectively constants for a given geometry of a specific 

experimental set-up.  In order to simplify the analysis, they will be treated as such.   

An analysis of Figure 3.8 for a light source converging onto a virtual point A yields similar 

results as for the divergent case.   
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Figure 3.8 - Schematic for the geometry of a convergent source to a virtual point A using a CDG to create chirped 
circular gratings 

Here the value of s will be negative and point P will have the co-ordinates:  

 ( cos , sin )l s lθ θ− +       (3.5.10) 

From triangle CZP, still maintaining the s has a negative value, we know that: 

 ( )
( )

cos
tan

sin
m l
s l

θ
θ

θ
+

=
− +

      (3.5.11) 

which further reduces to: 

 cos sinl m sθ θ= − −       (3.5.12) 

From Figure 3.8 knowing that the location of the image source is: 

 ( , ) ( 2 cos , 2 sin )I X Y l s lθ θ= − +      (3.5.13) 

Substituting in equation (3.5.12) into (3.5.13) yields: 
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 ( , ) (2( sin cos )cos , 2( sin cos )sin )X Y s m s s mθ θ θ θ θ θ= + − +  (3.5.14) 

This equation (3.5.14) is precisely equivalent to equation (3.5.4) derived from the 

diverging source case above.  This equivalency holds true so long as the virtual point source A is 

lower than point Q (0, -m/tanθ) where mirror line intersects the axis of symmetry or 

mathematically:  

/ tans m θ< −      (3.5.15) 

If the location of the virtual point source was above point Q on the diagram, then the angle 

of the converging light would be steeper than the CDG angle.  In this case the CDG mirror would 

fall into its own shadow and no light would hit the mirror at all.   

Unlike the last section where we analysed a collimated source beam to inscribe constant 

pitch SRGs, in the chirped pitch configuration it is impossible to isolate the parameter δ from 

equation (3.5.9) to get a spatial representation of the grating pitch 2 1δ δ− through algebraic 

manipulation.  In order to overcome this problem, a computer simulation using a ray trace analysis 

method was developed in order to measure the distance beams of light travel before meeting at a 

position (δ, 0) on the sample.  By taking multiple virtual test paths for the rays of light, the 

simulation can provide an estimate of the grating pitch as a function of δ which can be graphed for 

a given experimental geometry.  This computer simulation was independently verified by using 

commercial algebra software to numerically solve equation (3.5.9) with equation (3.5.7) for certain 

test cases with the same set geometry as the simulation.  The results of this simulation will be 

presented in the section 4.5.   The MATLAB source code for the ray trace simulation is found at 

Appendix A: 

3.7 Critical height of the CDG 

 The ratio of the height of the CDG fixture h, to the radius of the minor aperture, m, is a 

critical parameter that also depends on the CDG angle.  If the height of the CDG is too great, then 

the reflected beam will cross the centre mark of the circular SRG being inscribed and create 
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additional unwanted interference with the beams from the opposite side of the CDG.  If the height 

of the CDG is too small, then the reflected beam will not reach the centre point of the circular SRG 

at all and the result will be a ring grating instead of a full circular grating.    

 

Figure 3.9 – Geometry to calculate the critical height of the CDG with collimated beam 

The critical height of the CDG, hc, is defined as the height which causes the reflected beam 

to strike the centre of the circular grating.  Using triangle ADE from Figure 3.9 it can be shown 

that: 

 
tanc
th
θ

=       (3.6.1) 

Using triangle ABC it can be shown that: 

 tan 2
c

m t
h

θ+ =       (3.6.2) 

Isolating for t from equation (3.6.2) gives: 

 tan 2ct h mθ= −      (3.6.3) 

Substituting equation (3.6.3) into equation (3.6.1) it can be shown that: 

 
tan 2 tanc

mh
θ θ

=
−

     (3.6.4) 

This expression defines the critical height of the CDG for inscribing constant pitch SRGs 

with a collimated wave front in terms of the two other CDG parameters m and θ.  
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Figure 3.10 - Geometry to calculate the critical height of the CDG with divergent beam 

In the case of a convergent or divergent wave fronts used for inscribing chirped pitch 

SRGs, the calculations are complicated by the additional parameter s.  Figure 3.10 shows the 

geometry for calculating the critical height of the CDG for a divergent beam.  From equation 

(3.5.4) we know the position of I is equal to: 

 ( , ) ( cos(2 ) sin(2 ), cos(2 ) sin(2 ))X Y m m s s mθ θ θ θ= + + −  (3.6.5) 

We can use the standard equation for a line to describe a line from point I to the origin as: 

 cos2 sin 2
cos2 sin 2

Y s my x x
X m m s

θ θ
θ θ

−= =
+ +

   (3.6.6) 

We can also describe the line that coincides with the CDG mirror as: 

 tanx y mθ= +       (3.6.7) 

To find the point of intersection of these two lines, we substitute equation (3.6.7) into 

equation (3.6.6) and simplify with trigonometric identities to get: 

 ( )cos2 sin 2
2 tanc

m s m
h y

m s
θ θ

θ
−

= =
+

    (3.6.8) 

This equation represents the critical height of a CDG when inscribing with a divergent 

wave front.  Since we know that Cartesian co-ordinate location equations from the Image Source I 
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are equivalent for converging and diverging beams from equations (3.5.4) and (3.5.14), we know 

that equation (3.6.8) will also hold true for the case of a converging light source (s<0).   

However, applying the constraint that the critical height must be a positive value allows us 

to gain more insight into the geometry of a converging or diverging beam used with a CDG using 

equation (3.6.8).  If s is greater than zero, as with a diverging beam, then the value in brackets of 

equation (3.6.8)  must also be greater than zero in order to get a positive critical height giving: 

 cos2 sin 2s mθ θ>  

 tan 2s m θ>       (3.6.9) 

If value of s is smaller than the value given by equation (3.6.9), then the bottom half of 

equation (3.6.8) must be negative to give a positive value to hc.  This means that: 

 0 2 tanm s θ> +  

 2
tan
ms
θ

−<       (3.6.10) 

Equations (3.6.9) and (3.6.10) constrain the possible values of s for a given CDG geometry 

if a full circular grating is desired with no cross over interference.  From the previous constraint 

given by equation (3.5.15), it is theoretically possible to achieve ring gratings within the range of: 

 2
tan tan
m ms
θ θ

− −> >      (3.6.11) 

However, in this range of values, the geometry will never allow the reflected interfering 

beam to reach the centre of the circular SRG.   This can be seen in Figure 3.11 where similar 

triangles PAQ and IAO are set by the condition that point A is twice the length from the origin as 

point Q where the extended line of the CDG mirror intersects the y-axis.   In this case the reflected 

source beam is parallel to the CDG mirror and would therefore require an infinitely high CDG 

height h in order to create an interference pattern all the way to the centre of the SRG at the origin.  

For any values of s in between point A and Q as stated in equation (3.6.11), ring gratings are 

possible but a full circular grating will not be possible to create.   
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Figure 3.11 – Figure demonstrating the geometery of the maximum critical height for a CDG with a converging 
light source 
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CHAPTER 4: Experimental Procedure 

4.1 Preparation of the Azo-glass samples 

A Dispersed Red 1 (DR-1) azo-benzene compound with mexylaminotriazine group is 

synthesized according to literature13.  The result is a fine powder which is prepared in a 3 percent 

solution, by weight, in dichloromethane.  The solution is mixed by shaking for approximately one 

hour and then passed through a 50 µm filter.  Glass microscope slides are cut into squares about 3 

by 3 cm large.  They are cleaned with soap and water, wiped dry and further air dried in an oven at 

100 degrees Celsius for 10 minutes.  The dry slides are blown with compressed air to remove any 

dust particles and are placed in a humidity-controlled chamber on a spin coater where 

approximately 3 ml of the prepared azo-glass solution is manually deposited and spun at 1500 rpm 

for 40 sec.  The sample is then placed in an oven at 95 degrees Celsius for a further 20 minutes to 

evaporate any remaining solvent.  The typical film thickness ranges from 400 to 500 nm as 

measured with a Sloan Dektak II D profilometer, model 139961.  The sample films are then ready 

for inscription as detailed in the following sections. 

4.2 Manufacturing and measuring of the CDG fixtures 

Several CDG fixtures were machined and polished using manual equipment found in 

common machine shops. Care was taken to ensure that the reflecting conical surface was a true 

truncated cone, finishing at a knife-edge on the minor aperture, with its central axis perpendicular 

to the flat face.  The material used was high-quality annealed carbon steel. After machining and 

polishing, the CDG fixtures were washed with solvent and dried with air. Approximately 500 nm of 

silver was then sputter coated onto each CDG in order to create a mirror-like finish on their interior 

surface. An example of a finished CDG is shown in Figure 4.1.   
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Figure 4.1 – A Circular Diffraction Grating Generator or CDG for short.   

 

A total of six CDGs were manufactured with nominal angles θ  of 12, 20, 25, 30, 32.5 and 

42.5 degrees.  The height, h, and the radius of the minor aperture, m, of the CDGs were measured 

using digital callipers with an instrument uncertainty of 0.02mm.  The width of the CDG mirror, t, 

was measured using a travelling microscope with a Vernier scale accurate to within 0.02mm.  

Because of the somewhat subjective nature of the measurements taken with the travelling 

microscope, 3 trials were performed to estimate the average value and random uncertainty, which 

was added to the instrument error.  The angle θ was calculated by using the inverse tan of t divided 

by h as in Figure 3.9.  The error in the measured angle was calculated using the partial differential 

method.  Since the tolerances of the machining process are not known, the measured angles and 

errors seen in Table 4.1 are used in all graph data and theoretical calculations in this thesis.  
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Table 4.1 – Nominal and measured CDG angles.  The measured angles are taken for the remainder of this thesis.  
The row in bold corresponds to the CDG geometry used for chirped circular grating portion of the experiment.   

Nominal  
CDG 
angle 

(degrees) 

Width of CDG mirror in radial axis: 
t (mm) 

Height of 
CDG mirror: 

h (mm) 

Measured CDG 
angle: 

θ (degrees) 
trial 1 trial 2 trial 3 average error value error value error 

42.5 3.91 3.88 4 3.93 0.08 4.62 0.02 40.4 0.7 
32.5 2.58 2.68 2.66 2.64 0.07 4.5 0.02 30.4 0.8 
12 1.5 1.42 1.52 1.48 0.07 6.97 0.02 12.0 0.6 
20 2.12 2.54 2.3 2.32 0.23 6.58 0.02 19.4 1.8 
25 3.42 3.32 3.76 3.5 0.24 7.55 0.02 24.9 1.6 
30 2.34 2.48 2.38 2.40 0.09 4.34 0.02 28.9 1.0 

4.3 Inscription of constant pitch circular gratings using a planar wave front 

 An azo-glass sample was placed directly on the reverse side of a CDG as in the 

experimental setup illustrated in Figure 4.2.  The beam from a 5-watt Verdi diode-pumped laser 

(model 0174-525-52) with a wavelength of 532 nm was passed through a spatial filter, collimated 

with a convex lens, and circularly polarized by a quarter-wave plate.  Circularly polarized light is 

used to ensure an even grating is formed in all directions of the circular SRG.  Linearly polarized 

light directly from the laser would not work well for forming circular gratings because of the 

polarity dependence of the photo induced transport effect in azo-glass as mentioned in section 1.4.  

The resulting collimated beam was measured to have an irradiance of 604 mW/cm2.  The beam 

diameter was controlled by a variable iris and was projected onto the CDG and sample.  All of the 

optical elements were mounted to a solid rail on an optical experiment table.  Special care was 

taken to ensure that all optical elements were centred along the optical axis and the collimated 

beam was perfectly orthogonal to the CDG in order to match the theoretical geometry as accurately 

as possible.   
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Figure 4.2 – Experimental setup for inscription of constant pitch circular gratings. 

The real-time diffraction efficiency was measured as the SRG was forming by using the 

set-up depicted in Figure 4.3.  A low-powered helium neon probe laser was aimed at the sample 

where the circular grating was being inscribed. The beam from the probe laser was mechanically 

chopped and a silicon photodiode was placed at the location of the first-order diffraction maximum.  

The signal from the photodiode was amplified by a lock-in amplifier and plotted as a function of 

time on a computer. The diffraction efficiency was calculated by dividing the power from the first 

diffraction order by the power from the incident beam, which was measured in a similar manner.  

This was done in order to verify the amount of laser exposure time required to generate the most 

efficient diffraction grating.     
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Figure 4.3 – Experimental set-up for measurement of real time diffraction efficiency of a grating as it is being 
photo-inscribed. 

In total, five different SRGs were generated using the first five CDGs listed in Table 4.1.  

As outlined in section 3.7, the CDG must be shorter than the critical height hc or the reflected light 

will cross the centre point of the circular grating and cause unwanted interference.  However, the 

implications of changing the height of a CDG were not fully understood at the time that the CDGs 

were being manufactured.  Table 4.2 shows the measured height compared to the theoretical critical 

height hc.  It can be seen that in some cases, large discrepancies exist between the ideal value of hc 

and the measured height of the CDGs.  These differences in measured height versus critical height 

can be mitigated in several ways.  In the case where the measured height of the CDG was larger 

than hc, the variable iris in the experimental setup was reduced in size.  This effectively reduced the 

size of the beam reaching the outside edges of the CDG, and therefore eliminated any cross 

interference from happening.  If the height of the CDG was too small, a ring grating was created, 
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and good data points can still be taken in the ring portion of the grating.   After the 5 SRGs were 

inscribed, their pitches were then measured using three independent measurement techniques.    

 

Table 4.2 – Measured height compared to critical height for the 5 CDGs used in the collimated beam experiment.    
The critical height is calculated for a collimated laser source using equation (3.6.4).   

Measured 
CDG angle 

- θ (degrees) 

Minor 
radius - 

CDG Height - 
h (mm) 

m (mm) measured hc 

40.4 5.65 4.62 1.06 
30.4 5.60 4.5 4.66 
12.0 5.72 6.97 24.61 
19.4 5.72 6.58 12.64 
24.9 5.92 7.55 8.25 

 

4.4 Measurement techniques for grating pitch 

Atomic Force Microscope (AFM) measurements of the grating pitch were taken using a 

Pacific Nanotechnology Nano-R O-020-0002 scanning probe microscope that was calibrated to be 

within 3% accurate using a sample with known dimensions.  The grating pitch was measured from 

the AFM imagery over the maximum number of visible grating periods and then averaged to 

improve accuracy of the results.  Four separate scans were also made on each circular grating at 0, 

90, 180, and 270 degree positions and these results were further averaged.   

A set of circular SRGs produced from each CDG were sputter coated with approximately 

60 nm of gold.  A Philips CP-XL30 Scanning Electron Microscope (SEM) with an instrument 

uncertainty of 5% was then used to create imagery of the coated SRGs with magnifications less 

than capable by the AFM in order to view a larger portion of the grating.  The length of ten grating 
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periods was measured from the digital images using public domain imagery software ImageJh.  The 

results were divided by ten to achieve an average measurement of the grating pitch.   

The final measurement method for estimating the grating pitch of the circular SRGs is by 

performing direct measurements of the diffraction angle.  A 4 mW helium neon laser, semi-

transparent beam splitting mirror and computer controlled rotary table were placed on an optical 

experiment table in the configuration shown in Figure 4.4.  Prior to the diffraction grating being 

inserted, a screen is marked with a vertical line to indicate the position of the laser beam as it 

passes straight through the system.  The rotary table with attached sample diffraction grating is then 

rotated until the zeroth reflected diffraction, which is also reflected off the beam splitter, is aligned 

with the vertical screen marking.  This indicates that the light beam is normally incident on the 

sample.  The rotary table is then turned until the first reflected diffraction order is reflected off the 

beam splitter and aligned with the line on the screen.  In this position of the rotary table, the 

diffracted beam is travelling along the same path as the incident beam, so therefore, the angle of 

incidence is equal to the angle of diffraction.  The computer calculates the difference in angle from 

the normal position to the angle that this occurs.  Using equation (3.3.22) and given the first 

diffraction order m = 1 as well as given that 1 iθ θ=  leads to the equation: 

 
12sin

λ
θ

Λ =  (4.3.1) 

Knowing the wave length of the laser and with value of 1θ  from the rotary table allows for 

the precise calculation of the pitch Λ.  Measurements are taken from the 1 and -1 diffraction orders 

and the results are averaged to further improve the precision of the measurement.   

The grating equations, and subsequently equation (4.3.1), are derived using a linear array 

of point sources, and so technically speaking these equations should apply to linear diffraction 

gratings.  However, if the laser from the diffraction measurement set-up illuminates a small portion 

                                                        
h  ImageJ software by Wayne Rasband. National Institute of Mental Health, Bethesda, Maryland, USA.  
http://imagej.nih.gov/ij/ 
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of a circular SRG near the outside edge of the grating, then this small region of the circular grating 

is a good approximation of a linear grating.  This is because size of the grating pitch (and the 

illuminated test region) is very small compared to the overall radius of the circular grating.   

Therefore the pitches calculated by this direct diffraction angle measurement method remain valid 

approximations.   

 

Figure 4.4 – Side view of the direct diffraction angle measurement set-up used to calculate grating pitch.   

4.5 Inscription of chirped pitch circular gratings with a curved wave front 

The experimental setup for inscribing chirped pitch circular SRGs is very similar to the 

setup described in section 4.3.  However, in this case a focusing lens is inserted into the optical path 

between the variable iris and the CDG.  Because the incoming light is collimated, the focusing lens 

generates an approximation of a point source of coherent light at its focal point.  Depending on the 

focal length of this lens and the distance to the sample film, the point source may be used to 

produce a diverging or converging spherical wave front as illustrated in Figure 4.5.  A lens with a 

focal length of 5 cm was used for the diverging case, while a lens with a focal length of 30 cm was 

used in the converging case.  A rail-mounted screen was used to find the location of the point 

source in order to verify the distance, s, between the point source and the sample.   

Laser 

Beam splitter 

 

Rotary table Marked 
Screen 

Diffraction 
Grating 

 



50 
 

 

Figure 4.5 – Experimental setups for inscription of chirped pitch circular gratings.  (a) Representation of the case 
where the focal point of the focusing lens is placed ahead of the CDG to create a diverging source.  (b) 
Representation of the case where the focal point of the focusing lens is placed behind the CDG to create a 
converging source.   

In this portion of the experiment only one CDG with a measured angle of 28.9 degrees was 

used.  Its dimensions are specified in the row in bold from Table 4.1.  Multiple trials were 

performed with different distances, s, between the point source and the sample in order to better 

understand the effects of this parameter on the resulting SRG.  Because of constraints in the length 

of the optical rail, and because of interference between rail-mounted optical elements, five values 

of s were used: -20, -10, 3, 6, and 9 cm.   
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Again, as discussed in the theory section, the critical height of the CDG must be 

considered.  This time because the inscribing light has a spherical wave front, the critical height of 

a given CDG changes with the distance to the point source, s, as described in section 3.7.  Table 4.3 

shows this theoretical relationship using the same experimental geometry outlined in this section.  

The additional theoretical cases of s = 1000 cm and s = -1000 cm were added to this table to 

demonstrate that for large absolute values s, the calculated values of hc for a spherical wave front 

approach the theoretical value of hc = 5.73 mm for a collimated source.  This indicates that the 

derived theory for critical height of the CDG is self-consistent because distant point sources can be 

approximated as collimated light.   

Table 4.3 – Critical height of a CDG as the distance from the sample to point source (s) varies.  These values were 
calculated using equation (3.6.8) with CDG angle of 28.9 degrees and minor aperture radius of 5.95 mm.  The 
critical height of the CDG for a curved wave front approaches the value for the critical height of the CDG for a 
collimated wave front, hc = 5.73 mm, for large absolute values of s. 

Distance from 
point source to 
sample: s (cm) 

Critical height of CDG 
for curved wave front: 
hc (mm) 

1000 5.71 
9 4.13 
6 3.55 
3 2.28 
-10 7.99 
-20 6.72 
-1000 5.74 

 

The actual measured height of the CDG was 4.34 mm.  In the cases where the actual height 

was larger than the required hc from Table 4.3, the variable iris was reduced in size, effectively 

reducing the size of the CDG exposed to light.  This was done conservatively in order to ensure no 

crossover interference would take place.  According to theory, the result is that the gratings would 

not be formed all the way to the centre of the circular SRG but instead would form a band of 

grating grooves in the shape of a ring of concentric circles.  Similarly, when the measured height of 

the CDG was smaller than the required critical height, ring gratings were also formed.  The pitch of 



52 
 

the resulting SRGs was then measured at various distances from the centre of the grating order to 

determine the profile of the chirp of the grating pitch.  Because ring diffraction gratings were 

formed, not full circular gratings, the pitches  were measured from the edge of the grating to as 

close to the centre of the grating as measurements would allow.   

For the chirped pitch gratings, the AFM was the only instrument used to measure grating 

pitch as a function of position.  This instrument has already been proven to be an accurate form of 

measurement from the experiments with constant pitch circular gratings.  The very small scanning 

area for the imagery combined with the ability to accurately control the sample position on a sub-

millimetre scale using the computer controlled sample platform, made the AFM an excellent tool 

for this application.  Direct diffraction angle measurements would have been problematic because 

of the larger sample area covered by the probe laser beam and because of difficulties with 

measuring the distance from the centre of the circular grating.  SEM imagery would have offered a 

good alternative to the AFM measurements but its operation was dependent on technician 

availability where the AFM measurements could be done in-house.   
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CHAPTER 5: RESULTS 

5.1 Results from the real time diffraction efficiency measurements 

Real-time measurements of the diffraction efficiency of circular SRGs were taken as they 

were being inscribed, as described in section 4.3.  The resulting graph of the diffraction efficiency 

as a function of time is shown in Figure 5.1.  This figure shows a smooth increase in the diffraction 

efficiency of the grating after the inscribing laser is turned on at t=0.  The graph plateaus at 

approximately t=300 seconds when the maximum grating height is reached.  The large downward 

spike just after t=600 seconds occurred when the inscribing laser was turned off since the sudden 

change in illumination took a few cycles for the lock-in amplifier to average out the signal.  Based 

on the results of this graph, an exposure time of 350 seconds was chosen for subsequent production 

of circular SRGs in this experiment.   

 

Figure 5.1 – Real-time first order diffraction efficiency of a circular SRG as it is being inscribed in DR-1 azo-glass 
by a 40.4 degree CDG using a collimated laser beam with an irradiance of 604 mW/cm2 
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Because the SRG being formed is a circular grating, the first order diffraction maximum 

from the probe laser is an arc of a circle instead of a point as with a linear grating.  The photo-

sensor used to measure the relative power was placed as close as possible to the sample in order to 

capture as much of the light from the diffraction order as possible, however some of the light fell 

outside of the sensor area.  The result is that the calculated diffraction efficiency shown in Figure 

5.1 may be lower than the true diffraction efficiency.  However this inaccuracy was deemed 

acceptable, since the main purpose of collecting this data was for determining the amount of 

exposure time required to inscribe gratings using the experimental set-up.  The data in graph Figure 

5.1 may not be the true absolute diffraction efficiency, but still demonstrates the amount of time 

required in order to maximize the grating efficiency.   

 

Figure 5.2 – The first order diffraction maximum is an arc of a circle when a small portion of the circular SRG is 
illuminate by a probe laser.  This makes calculations of the diffraction efficiency more difficult since not all of the 
diffracted light can be captured on the surface of the photo-sensor.   

5.2 Results from constant pitch circular SRGs produced with planar wave fronts 

A grating produced as outlined in section 4.3 is shown in Figure 5.3.  Although the 

resulting gratings appeared to be circular, the individual grating lines themselves are much too 
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small to be seen with the naked eye.  In order to verify that circular gratings were produced, one of 

the SRGs was exposed to a low power Helium Neon laser with a collimated beam that illuminated 

the entire grating surface.  The resulting diffraction pattern is shown in Figure 5.4.  The zeroth 

order is the circle in the centre where light passes straight through the grating.  The first order 

maximum is represented by the ring of light and is consistent with the pattern expected from a 

circular diffraction grating.  This diffraction pattern also demonstrates that the experimental set-up 

has recorded an accurate holographic representation of the incident and reflected inscribing light 

from the CDG, and is able to reproduce this pattern holographically when illuminated with 

monochromatic light.    

 

Figure 5.3 – A circular SRG with radius of approximately 11mm produced holographically using a CDG.  This 
sample has been coated with gold prior to observations being made with a SEM.  It can be seen that the grating 
pattern does not reach all of the way to the centre of the SRG, but forms a band of rings.  This was done 
intentionally in order to ensure no cross over interference occurred from the opposite side of the CDG.   

 



56 
 

 

Figure 5.4 – A photograph of the diffraction pattern produced from a circular SRG being completely illuminated 
by a low-powered collimated laser beam.  The screen is approximately 1 cm away from the grating and shows the 
zeroth and first order diffraction pattern consistent with a circular diffraction grating.   

The five different sample gratings were then imaged using an AFM.   An example of 

imagery from the AFM is shown in Figure 5.5.  This figure shows a regular sinusoidal grating 

pattern with the grating grooves aligned in the azimuthal direction, consistent with an SRG made 

up of concentric rings.  The maximum measured grating depth was approximately 250 nm.   
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Figure 5.5 - AFM scan of circular SRG generated by a 19.4 degree CDG. The x-axis corresponds to the radial 
direction of the circular grating while the z-axis is the depth of the SRG. The average grating pitch measured from 
four different AFM scans at the 0°, 90°, 180° and 270° positions of this grating was 905 nm. 

Table 5.1 shows the results of pitch measurements taken from the AFM scans.  Because the 

AFM has a very small scan area of about 7µm across, it is possible to see some localized 

differences in grating pitch, possibly caused by imperfections in the CDG mirror or slight 

misalignment of the optical elements in the experiment.  For this reason, four scans were taken of 

each circular SRG at 0, 90, 180 and 270 degree positions.  These results were then averaged for the 

final value.  Random uncertainties of the grating pitch were calculated by subtracting the smallest 

measured value from the largest measured value and dividing by 2 for each circular SRG.  The 

random uncertainty was then added to the 3% instrument uncertainty to give a total uncertainty to 

the measured pitch.  The theoretical values of grating pitch were calculated using equation (3.4.11) 

and a wavelength of 532nm.  All theoretical results of grating pitch fall within the uncertainty of 

the measured pitch.   
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Table 5.1 – Theoretical results compared to measured results from AFM scans of grating pitch for five circular 
SRGs made from CDGs with different angles.  Theoretical pitches were calculated using equation (3.4.11).    

Measured 
angle of 

CDG 
(degrees) 

Theoretical 
prediction 
of grating 
pitch (nm) 

Grating pitch as measured by AFM scan (nm) 

90o 
position 

180 o 
position 

270 o 
position 

0 o 
position average 

Uncertainty 
(instrument 
+ random) 

40.4 539.0 580.9 556.3 569.1 548.8 560 30 
30.4 609.5 629.7 614.0 638.9 616.3 620 30 
12.0 1309.2 1309.8 1495.0 1475.0 1314.6 1400 140 
19.4 848.2 925.3 894.0 934.2 866.6 900 60 
24.9 697.1 719.3 722.9 771.0 718.7 730 50 

At the time that the SEM was available, the CDG with an angle of 24.9 degrees had not yet 

been manufactured.  For this reason it was only possible to take SEM imagery of four out of the 

five SRGs.  The four available samples were sputter coated with a thin film of gold and imagery 

was taken at various levels of magnification.  Example SEM imagery is shown in Figure 5.6.  At 

magnification levels of about 2000 times, the individual grating grooves can be resolved and appear 

to be consistent over large areas and very regularly spaced.  The curvature of the circular grating 

lines cannot be easily seen because the level of magnification is still relatively high and their radius 

of curvature is relatively large so that the grating groves appear to be linear.  At a magnification 

level of 15000 times, the individual grating lines are very clearly resolved and can be measured 

using the integrated scale on the images.   
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Figure 5.6 - SEM imagery of circular SRG generated from a 19.4 degree CDG over a range 

of magnification powers.  At 2000 times magnification, the grating peaks can be visually resolved 

showing a highly regular grating pattern over a scale of about 100 µm. At 8000, 15000, and 25000 

times magnification grating lines are very clear. The distance of 10 lines is measured to give an 

average pitch of 809 nm. 

 

Table 5.2 shows the theoretical grating pitches compared to the pitches measured by the 

SEM imagery.  It was not possible to take multiple images at different locations of the SRGs using 

the SEM because of time constraints, so the random uncertainty is not known.  However by using 

an instrument uncertainty of 5%, all of the predicted theoretical grating pitches fall within the 

uncertainty of SEM measurements.   
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Table 5.2 - Theoretical results compared to measured results from SEM imagery of grating pitch for four circular 
SRGs made from CDGs with different angles.  Theoretical pitches were calculated using equation (3.4.11).    

Measured 
CDG angle 
(degrees) 

Theoretically 
predicted grating 

pitch (nm) 

Average 
measured pitch 
from SEM (nm) 

SEM instrument 
uncertainty: 5% 

(nm) 
40.4 539.0 540 30 
30.4 609.5 580 30 
12.0 1309.2 1280 60 
19.4 848.2 810 40 

The final method used to measure the grating pitch of the constant pitch circular SRGs was 

to measure the angle of diffraction of the first order maxima as described in section 4.3.  A 

computer program controls the rotary table, measures and records the diffraction angle, and 

automatically performs the required calculations using equation (4.3.1).  The resulting pitch 

measurements are shown for SRGs from all five CDG angles in Table 5.3 and it can be seen that 

the measured pitches fall within the uncertainty of the predicted values.   

Table 5.3 - Theoretical results compared to measured results of grating pitch calculated from diffraction angle 
measurements for five circular SRGs made from CDGs with different angles.  Measured pitches were calculated 
using equation (4.3.1) and theoretical pitches were calculated using equation (3.4.11).    

Measured 
CDG angle 
(degrees) 

Theoretically 
predicted grating 

pitch (nm) 

Pitch calculated 
from diffraction 

angle (nm) 

Calculated Pitch 
uncertainty: 5% 

(nm) 
40.4 539.0 540 30 
30.4 609.5 610 30 
12.0 1309.2 1270 60 
19.4 848.2 830 40 
24.9 697.1 710 40 

A graph summarizing the measured grating pitches from all three measurement techniques 

compared to the theoretically predicted value is shown in Figure 5.7.  Uncertainty in the CDG 

angle for each point is taken from Table 4.1.  It can be seen that the results for all three independent 

methods of measuring grating pitch are consistent and agree well with the predicted value from 

equation (3.4.11).    



61 
 

 

Figure 5.7 - Theoretical and measured results of the SRGs pitch inscribed by a 532 nm laser as a function of CDG 
mirror angle θ.   Measured results include data points taken from AFM, SEM and direct diffraction angle 
measurements. The theoretical curve is plotted using equation (3.4.11).   

5.3 Results from chirped pitch circular SRGs 

AFM scans were taken of the 5 chirped pitch circular SRGs that were generated from the 

28.9 degree CDG with different distances to the point source of light.  An example of the AFM 

imagery taken is seen at Figure 5.8.  The scans were taken approximately every 0.5 mm along a 

randomly chosen radial line starting at the outside edge of each circular SRG.  The scans were also 

repeated at the same distance from centre, δ, but on the opposite side of the SRG.  The grating pitch 

was measured from the imagery by averaging the distance between multiple grooves.  This result 

was then averaged again with the results from the AFM imagery taken from the opposite side of the 

SRG.  Grating pitch data as a function of δ as measured by the AFM imagery is presented as black 
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points in Figure 5.11 through Figure 5.15.  Uncertainty in the pitch was calculated by taking the 

absolute value of the difference between the two trials divided by two to find the random 

uncertainty and adding this to the 3% instrument uncertainty.  

 

Figure 5.8 - AFM imagery at 1mm from the edge of a circular SRG inscribed using a 28.9 degree CDG with a 
point source of inscribing light at s = -10 cm. 

The computer ray trace simulation described in section 3.6 was used in order to provide a 

theoretical solution to compare with the collected data.  The ray trace simulation provides two main 

outputs: a cross sectional schematic of the rays, as well as data points for the calculated pitch as a 

function of distance from centre of the circular SRG.  Figure 5.9 and Figure 5.10 are two examples 

of schematics generated by the simulation that represent the calculated ray paths.  Firstly, lines are 

drawn to represent the innermost and outermost beams that will strike the CDG and that are 

reflected in order to determine the angular boundaries of the simulation.  Then, at a chosen interval, 

intermediate sample beams are drawn and are reflected by the CDG.  Finally lines that represent 

beams of directly incident light are drawn to meet the points of the reflected intermediate sample 
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beams.  This output is used to visually confirm that the geometry of the simulation is working 

correctly.  The fact that all of the critical heights used in the simulation runs strike the centre point 

(δ=0), as seen in Figure 5.9 and Figure 5.10, and are in agreement with the critical heights taken 

from Table 4.3 adds further evidence to the accuracy of the simulation.   

 

Figure 5.9 – Schematic of rays of light reflecting off of a 2D cutaway of a CDG mirror for a diverging wave front. 
The schematic is from the ray trace simulation using a distance to point source of s=3cm and a critical height of 
the CDG hc=2.28 mm with the outermost reflected beam striking the centre of the SRG as predicted.   
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Figure 5.10 - Schematic of rays of light reflecting off of a 2D cutaway of a CDG mirror for a converging wave 
front.  In this case it appears that the rays are coming from below the CDG.  The reason for this is that it was 
convenient in the simulation to calculate the angle of incidence to the mirror, and subsequently the angle of 
reflection, by simulating the point of convergence as the true source of light.  In the physical experiment the light 
is actually approaching from above and converging on a virtual point source below the sample.  The schematic is 
from the ray trace simulation using a distance to point source of s=-10cm and a critical height of the CDG hc=7.99 
mm with the outermost reflected beam striking the centre of the SRG as predicted.   

An additional result from the simulations is a graph with data points for the theoretical 

grating pitch as a function of δ, the coplanar distance from the centre of the SRG.  These data 

points were calculated using simulation parameters that matched the geometry measured from the 

physical experiments as closely as possible.  The wavelength of light was entered as 532 nm to 

match the wavelength of the laser used.  The critical height from Table 4.3 was used as the height 

parameter for each case in the simulation.  A measured CDG angle, θ, of 28.9 degrees from Table 

4.1 and a minor radius of 5.95mm from Table 4.3 were used.  Since there is an uncertainty of 1±  

degree in the measured angle, the simulation was also executed for CDG angles of 27.9 and 29.9 

degrees.  This was done for all five tested distances, s, from the point source to the sample film.  

These results can be seen as the solid, dashed, and dotted line graphs in Figure 5.11 through Figure 

5.15.  The red and blue lines border an area that represents a range of theoretical solutions within 
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the confines of the error in the CDG angle parameter.  The black dotted line represents the ideal 

theoretical solution for a CDG angle of 28.9 degrees.   

One additional step was taken in order to demonstrate that the theoretical grating pitches 

generated by the simulation were accurate.  Although equation (3.5.7) does not simplify well in its 

general form, it can be approximated using numerical methods for specific cases.  By assigning the 

same parameters to this equation as in the computer simulation and only leaving the values of PD 

and δ as variables, a solution was found for various test points using commercial algebra software 

to satisfy equation (3.5.9).  By subtracting the solution values of δ2 and δ1, the pitch Λ can be found 

for each test point.  This method was used to calculate grating pitches for various test values of δ, 

using the same distances from the point source to the sample, s, as used in the experiments.  This 

was done using the same geometric parameters as the simulation.  The results from this numeric 

solution can be seen as white circle points on Figure 5.11 through Figure 5.15.  The results indicate 

a perfect agreement between the simulation and the numeric solution adding further confidence that 

the ray trace simulation is performing as expected.    
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Figure 5.11 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with diverging 
point source 3 cm away from sample. 

 

Figure 5.12 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with diverging 
point source 6 cm away from sample. 
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Figure 5.13 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with diverging 
point source 9 cm away from sample. 

Figure 5.11 through Figure 5.13 represent the test cases where diverging light from the 

inscribing laser was used to inscribe chirped pitch SRGs.  All three graphs have a negative slope 

indicating that the grating pitch gets smaller towards the edge of the circular SRGs.  These three 

graphs show a general trend where the smaller the distance, s, to the point source, the more 

pronounced the chirp of the grating pitch.  Figure 5.11 corresponds to data taken using a value of s 

= 3 cm and has the most pronounced negative chirp of -13.4 nm of pitch per mm of grating.  Figure 

5.12 corresponds to s = 6cm and has a chirp of -7.0 nm/mm. Figure 5.13 corresponds to a value of s 

= 9cm, and has the least amount of negative change in pitch over the surface of the grating at -4.5 

nm/mm.   
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Figure 5.14 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with converging 
point source -10 cm away from sample.    AFM measurements are not made for the values of δ smaller than about 
3.5 mm because the height h of the CDG prohibits the formation of grating lines in the center of the SRG as 
discussed in section 4.5. 

 

Figure 5.15 - Theory and measurements for a circular SRG inscribed from a 28.9 degree CDG with converging 
point source -20 cm away from sample.    AFM measurements are not made for the values of δ smaller than 3 mm 
because the height h of the CDG prohibits the formation of grating lines in the center of the SRG as discussed in 
section 4.5. 
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Figure 5.14 and Figure 5.15 represent the test cases where converging light from the 

inscribing laser was used to inscribe chirped pitch SRGs.  These two graphs have a positive slope 

indicating that the grating pitch gets larger towards the edge of the circular SRGs.  Similar to the 

case of a diverging source, these graphs show a general trend where the smaller the distance, s, to 

the point source, the more pronounced the chirp of the grating pitch.  Figure 5.14 corresponds to a 

value of s = -10 cm and has the most pronounced positive chirp of 6.3 nm of pitch per mm of 

grating.  Figure 5.15 corresponds to a value of s = -20 cm, and has the least amount of change in 

pitch over the surface of the grating at 3.6 nm/mm.   

A summary of the measured rate of chirp dependent on the distance, s, to the point source 

can be seen in Table 5.4.  These values were calculated as the slope from linear regressions of the 

experimental data points.   

Table 5.4 – Rate of change in grating pitch over distance from centre of chirped SRG for the 5 tested distances to the 
inscribing point source.  Note that negative values of s correspond to a converging source where positive values of s 

correspond to a diverging source.    
Distance from point 
source to sample –  
s (cm) 

Rate of change in pitch over 
distance from centre of grating –  
Chirp (nm/mm) 

-20 3.6 
-10 6.3 
3 -13.4 
6 -7.0 
9 -4.5 

The experimental data points from Figure 5.11 to Figure 5.15 generally fall within 

uncertainty of the ideal theoretical solution of a 28.9 degree CDG.  The differences between 

experimental and theoretical results can be accounted for by a number of potential sources for 

error.  Any imperfections in the CDG mirror surface or in the alignment of the CDG or point source 

can alter the results.  In order to help mitigate these sources of error, two measurements from 

opposite sides of the CDG were taken and the results averaged. Another source of error comes from 

the various parameters used in the simulation.  Because of limitations in the accuracy of measuring 
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the CDG angle using a travelling microscope, the relative uncertainty was highest for this 

parameter.  This is the reason that several simulations were run to quantify the possible range of 

errors caused by the uncertainty of the CDG angle.  However, additional error could have been 

introduced from inaccuracies in the distance to the point source, s, or the size of minor aperture of 

the CDG, m.  These values were known with greater accuracy since they were measured directly 

and so had a smaller relative uncertainty than the CDG angle.  Lastly, changes to the room 

temperature in the laboratory can theoretically affect the piezoelectric actuators on the AFM which 

might affect the accuracy of the AFM imagery.  The AFM was recalibrated at the beginning of 

each day of test measurements and any variations are accounted for in the 3% instrument error 

included in the total uncertainty of the AFM pitch measurements.   

One common trend that was seen in Figure 5.11 through Figure 5.15 is that the last two or 

three measured pitches furthest from the centre of the circular SRG are higher than expected for 

each SRG.  It is believed that the reason for this unexpected observation is a result of the 

manufacturing process of CDG fixture itself.  After the CDG is machined, it was polished in a time 

consuming process that removed small amounts of material on the surface of the CDG in order to 

get rid of any scratches.  Although extreme care was taken to polish the CDG at an angle consistent 

with its nominal geometry, the inner most edge of the CDG mirror where it is finished at a knife 

edge would have been more susceptible to the removal of material in the polishing process.  This 

would effectively lower the CDG angle in the areas closest to the knife edge, which is the area that 

reflects the interfering light for the outermost area of the resulting SRGs.  It is believed that the 

higher than expected grating pitches from the outside few points of the SRG measurements are 

indicative of a slight change of less than one degree in the CDG angle at the inside edge of the 

CDG mirror.   This accidental discovery may actually be beneficial in that it shows the potential for 

further controlling the rate of pitch by manipulating the curvature of the CDG mirrors.   

After the accuracy of the simulation had been independently confirmed by comparing it to 

the experimental data, further simulations were run in order to demonstrate the potential range of 
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pitches and the degree of chirp.  Similar geometry was chosen as used in the experiment. However, 

a wider range of values of s were used.  The results of these simulation runs are summarized in 

Figure 5.16.  This graph demonstrates that by using small positive values of s, it is possible to 

achieve grating pitches smaller than the wavelength of light.  This overcomes the theoretical limit 

of minimum pitch for circular SRG production using a collimated light source with a CDG as seen 

in equation (3.4.11).  For small positive or negative values of s, the change in grating pitch, or chirp 

is most pronounced.  Maximum values for grating chirp rate measured from the bottom and top 

curves in Figure 5.16 are -30.1 nm pitch/mm and 34.1 nm pitch/mm for values of s = 1 cm and s = -

2 cm respectively.   
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Figure 5.16 - The dependence of grating pitch on distance from the center of the grating for 14 simulated circular 
SRGs inscribed with a 28.9 degrees CDG using different distances to the point source of light, s, with a wavelength 
of 532 nm.  A positive value of s denotes divergent source while a negative value indicates a convergent source.  As 
the distance to the point source increases, whether positive or negative, the slope of the grating pitch over distance 
from centre of SRG approaches zero.  Small absolute values of s result in steeper slopes and nonlinear curves.  The 
grating pitch can be further controlled by changing the CDG angle θ or the wavelength of light λ.  Curves are 
derived from a ray trace computer simulation discussed in theory section of this thesis and seen in CHAPTER 
7:Appendix A:. 

An additional result that can be seen in Figure 5.16 happens for very distant point sources.  

Whether converging or diverging, the curvature of the inscribing light becomes less pronounced at 

far distances to the source and is a closer approximation to collimated light.  For values of s=10 m 

or s=-10m, the slope of the curves generated approaches zero.  This is consistent with the constant 

pitch gratings generated in the collimated beam experiment.  The values of pitch for distant point 

sources in Figure 5.16 are consistent with the predicted pitch from equation (3.4.11) for an SRG 

inscribed using a 28.9 degree CDG with 532 nm wavelength collimated beam.   Both results 

independently arrive at a constant pitch value of approximately 629 nm.  This shows that the 

derived theory for the chirped pitch circular gratings is simply a more general case of the theory 
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that was developed for the constant pitch gratings, and that the two theoretical solutions are in 

agreement.   
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CHAPTER 6: CONCLUSION 

This thesis has introduced a novel holographic method of generating circular diffraction 

gratings using a specially designed mirror fixture called a Circular Diffraction Grating Generator 

(CDG).  The circular gratings are inscribed in surface relief on thin films of photo-mechanically 

active azo-glass material.  The theory describing the geometry of interfering light reflected by the 

CDG has been developed in order to predict the grating pitch as well as the rate of grating chirp for 

circular surface relief gratings (SRGs) fabricated by this method.  A ray trace simulation was used 

as a tool to model the pitch of the generated SRGs and the results from this simulation agreed well 

with the theory as well as the experimental data.   

A collimated beam of coherent light can be used to create constant pitch circular SRGs.  By 

focusing the inscribing light to a point source, either converging or diverging on the CDG mirror, it 

is possible to create chirped circular SRGs with positive or negative rates of changes in pitch over 

the surface of the grating.  The result is that the pitch and chirp of the circular gratings can be 

controlled with a relatively high degree of accuracy within the confines of the theory by changing 

the geometry of the experiment and the wavelength of the inscribing light.   

One of the main advantages to this method of fabricating circular SRGs is the speed that 

the gratings are produced.  While other methods of fabrication such as grating engines, or direct 

milling with energy beams can produce gratings with comparable resolutions, it can take days of 

milling one groove at a time on expensive machinery to produce a grating of a few centimeters 

across.  Photolithography can produce gratings much more quickly than direct milling, but still 

requires the fabrication of a photo mask.  The method of creating circular SRGs outlined in this 

thesis can be described as a form of direct 3D interference photolithography, which combines the 

advantages of photolithography without the requirement for a photo-mask or chemical etching.  

The result is a single step process that can create holographic circular gratings quickly, without the 

requirement for a master grating or photo-mask, and without any specialized equipment other than 
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a suitably powerful laser.  In the case of the experiments outlined in this thesis, good quality 

gratings were formed in 350 seconds using a beam irradiance of 604 mW/cm2.  Less powerful 

inscribing sources of around 100 mW/cm2 would also work, but would require more exposure time.   

Another advantage of this circular SRG manufacturing technique is the relatively large 

scale of the gratings produced while still maintaining very fine sub micrometer detail in the grating 

structure.  While other methods of direct inscription of circular gratings in azo-polymer films have 

been demonstrated, the size of these gratings has been in the order of micrometers.  It has been 

demonstrated in this thesis that by using a CDG, it is possible to fabricate circular SRGs more than 

a centimeter across while maintaining a diffraction grating structure finer than 500 nm.  This 

method can be similarly scaled up or scaled down to meet application specific requirements by 

changing the size of the CDG.  The main practical limit to the size of a circular SRGs produced by 

this method is the irradiance of the collimated beam from the inscribing laser which must be wide 

enough to illuminate the entire CDG and also have enough power to activate the photo-mechanical 

response in the azo-material film with an irradiance of at least 50 mW/cm2 as discussed in section 

1.4.    

An interesting result from the analysis of the theory and experiments is the fact that the 

circular SRGs created by this new holographic method are very sensitive to the height of the CDG.  

It is important that its height not exceed the ‘critical height’ of the CDG or else the interfering 

beams will cross over the centre point of the circular grating and cause an unwanted third source of 

interference.   However, if the height of the CDG is less than the critical height, then it is possible 

to create a ring diffraction grating.  The ability to create ringed gratings may serve as an advantage 

in certain applications where the gratings serve to focalize or couple light towards a sample 

material in the centre of the rings.  Varying the height of the CDG below the critical height changes 

the thickness of the ring grating and allows for an additional element of controllability in the 

fabrication of gratings by this method.    
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Areas of future development on the topic of holographic circular gratings should 

concentrate on application based research.  Researchers using circular diffraction gratings in their 

work may benefit greatly from the ability to create customized circular SRGs with the required size 

and pitch in a fast, single-step process.  Because of the relative simplicity of this manufacturing 

process without the requirement for specialized complex equipment, this technology may enable 

small laboratories to fabricate their own customized circular gratings in order to further application 

based research in their own fields.  It is anticipated that areas of research such as diffractive lenses, 

surface emitting feedback dye lasers, and plasmonic enhancement of LEDs or solar cells, will now 

be more accessible to research groups that previously did not previously have the ability to 

manufacture their own circular gratings in house, thus paving the way for future discoveries in the 

field of photonics.    
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Appendix A: Code for ray trace simulation of CDG with converging and diverging wave fronts 

clearvars 
close all 
format long 
syms theta 
d=5.95e-3; %set radius of minor aperture (m) 
theta=28.9; % set CDG angle (degrees) 
s=-100e-3; % set distanc to point source (m) 
lambda=532e-9; % set wavelength of inscribing light (m) 
%h=d/(tand(2*theta)-tand(theta))*.397 
h=7.99e-3; % set height of CDG 
t=h*tand(theta); % calculate thickness of CDG based on height and angle 
  
%angle of reflection calculations in matrix form 
%mirror=[d 0 d+t h] 
%beam1=[d; -s] 
%beam2=[d+t; h-s] 
%reflectionmatrix=[cosd(-theta) -sind(-theta);sind(-theta) cosd(-theta)]*[-1 
0;0 1]*[cosd(theta) -sind(theta);sind(theta) cosd(theta)] 
%reflection1=reflectionmatrix*beam1 
  
angleout1=atand(d/s); %calculate the angle from the point source to innermost 
point on the CDG mirror 
angleout2=abs(atand((d+t)/(s-h))); % calculate the angle from the point 
source to the outermost point on the CDG mirror 
  
%calculate the reflected angle from the CDG mirror for the two beams above 
if s>0  
       reflectedangle1=(angleout1+2*theta); 
    reflectedangle2=(angleout2+2*theta); 
 else 
     reflectedangle1=(-angleout1+2*theta); 
    reflectedangle2=(-angleout2+2*theta); 
 end 
  
counter=0; 
scanincrement=.5e-3; %set the sample rate for how many test points you'd like 
(m) 
%scan and calculate test points to use 
for x=d+scanincrement:scanincrement:d+t %loop in increments of scanincrement 
along the length of the CDG mirror 
    counter=counter+1; 
    y=(x-d)/tand(theta);  % calculate the y position on the CDG mirror where 
the beam will hit 
    angleout=abs(atand(x/(s-y))); % calculate the angle from the source in 
order to hit the test point on the CDG mirror 
     
    %calculate the reflected angle for the test point on the CDG mirror 
    if s>0  
        reflectedangle=(angleout+2*theta); 
    else 
        reflectedangle=(-angleout+2*theta); 
    end 
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    finalx=x-y*tand(reflectedangle);% calculate the final x coord at sample 
after reflection 
     
    %draw the ray trace lines on the schematic 
    incident=line([0 x],[s y],'Color', [0 1 0]); 
    reflected=line([x finalx],[y 0],'Color', [0 1 0]); 
    straightin=line([0 finalx],[s 0],'Color', [0 0 1]); 
     
    %this section of code estimates the grating pitch by calculating the 
    %path difference between the test points selected above, and by moving 
    %in small increments away from the test point until a differnce in path 
    %difference of one wavelength is found 
     
    %calculate the pathdifference between incident and reflected beams for 
the test point 
    if s>0 
        pathdifference=sqrt(x^2+(y-s)^2)+sqrt((x-finalx)^2+y^2)-
sqrt(finalx^2+s^2); 
    else 
        pathdifference=-sqrt(x^2+(y-s)^2)+sqrt((x-
finalx)^2+y^2)+sqrt(finalx^2+s^2); 
    end 
    pdinwavelengths=pathdifference/lambda; % convert from m to # of 
wavelengths 
     
    phasescan=0; 
    microincrement=1e-10; %set very small incremental increase parameter 
    scanposition=x; 
    while phasescan<1 % loop while the difference between path difference is 
less then one wavelength 
        scanposition=scanposition+microincrement; %increase the scan position 
by one scan increment 
        y=(scanposition-d)/tand(theta); % calculate the y position on the 
mirror where the scan will strike 
        angleout=abs(atand(scanposition/(s-y))); % calculate the angle from 
the point source to hit the scan position on mirror 
          
        %calculate the reflected angle of the scan 
        if s>0  
            reflectedangle=(angleout+2*theta); 
         else 
            reflectedangle=(-angleout+2*theta); 
        end 
         
        finalxscan=scanposition-y*tand(reflectedangle); % calculate the 
xposition on the sample where the reflected scan ray will hit 
         
        %calculate the path difference between incident and reflected light 
        %for the scan position 
        if s>0 
            pathdifference=sqrt(scanposition^2+(y-s)^2)+sqrt((scanposition-
finalxscan)^2+y^2)-sqrt(finalxscan^2+s^2); 
        else 
            pathdifference=-sqrt(scanposition^2+(y-s)^2)+sqrt((scanposition-
finalxscan)^2+y^2)+sqrt(finalxscan^2+s^2); 



82 
 

        end 
        micropdinwavelengths=pathdifference/lambda; % convert scan position 
PD from m to # of wavelengths 
        phasescan=abs(pdinwavelengths-micropdinwavelengths); %check 
difference between path length between test point and scan point 
    end 
    
   %store position in x direction of test point and the resulting 
   %calculated pitch in two arrays 
   position(counter)=finalx; 
   pitch(counter)=(finalx-finalxscan); 
     
end 
%output the position and calculate pitch 
position.' 
pitch.' 
  
%draw remainder of elements on ray trace schematic 
scrsz=get(0,'ScreenSize'); 
%figure('Name','CDG simulation', 'NumberTitle', 'on', 'Position',[1 
scrsz(4)/2 scrsz(3)/2 scrsz(4)/2]) 
axis([0 d+t 0 .01]) 
axis equal 
%draw mirror 
mirror=line([d d+t],[0 h]); 
%draw inside border line 
incident1=line([0 d],[s 0], 'Color', [1 0 0]); 
%draw outside border line 
incident2=line([0 d+t],[s h], 'Color', [1 0 0]); 
reflected2=line([d+t d+t-h*tand(reflectedangle2)],[h 0],'Color', [1 0 0]); 
  
%plot position vs pitch graph 
figure 
plot(position,pitch) 
%position 
%pitch 
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